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Kinetic theory of rarefied plasma: the effective action method

I. N. Kosarev

The standard kinetic theory for rarefied plasma is based on the set of integro-differential
equations. These are the Boltzmann kinetic equations with collision integral (for particles of each
sort) and the Maxwell equations. In the latter, the charge density and current density are expressed
through one-particle distribution functions, which, in turn, are determined from the kinetic equations
(see e.g. [1]). In this work, the author suggests a kinetic theory of rarefied plasma (a physical equivalent
to the standard kinetic theory) that is based on the construction of propagators for distribution
functions, these propagators being dependent on these functions.

Consider a volume V' that contains N, particles of sort  and N, particles of sort b. In

the case of a classical plasma, it is sufficient to take into account only the contribution of the

classical trajectory in the path integral [2], which specifies the propagator of a particle. The

classical propagator for the density matrix p 7,7',¢ has the form

K21 =pexp (i/h) S,(Futy37,1) =S, (7 137 1)
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is the classical action of a particle with a mass m,,V (#),7,(¢) are the velocity and radius vector

of the particle, U,,,U,, are the potential energies of particle—particle interaction, R is the radius

vector of a scatterer, and FL _ is the external force acting on the particle. In a rarefied plasma, the

characteristic correlation (interaction) time is much shorter than the characteristic relaxation time

[1]. Therefore, one may assume that scatterers in (1) and (2) describe piecewise rectilinear
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trajectories and pass rectilinear segments for a time that is smaller than the relaxation time but
longer than the correlation time. In this case, ensemble averaging of propagator (1) is carried out
with a multiparticle distribution function where only small pair correlations are taken into
account (polarization approximation [1]). Such averaging results in an effective-action

propagator. In the limit N — o0,/ — oo the averaged propagator has the form
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Here, g, (R, P,.R,, ,»t) is the pair correlation function, which is expressed through the single-

particle distribution functions £, , (¥, p,?) (p is the particle momentum) [1], and

Vi = [dpdR f,(R, p.1,)
i 2 = (4)
[exp{—g [ dt Uy (R=3(t, 1) =F,(6) U, (R=¥(t, = 1) = F/(1) }— 1}.

V,» is the collision volume (see the adiabatic line broadening theory [3]).

In the case of Coulomb interaction, the Weisskopf radius is on the order of the minimal
impact parameter r,,;, in the Landau collision integral. The averaged effect of the scatterer fields

on the particle trajectory in (3) can be taken into consideration in terms of the perturbation theory
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where r,;/rp and nr’

min

are small parameters (rp is the Debye radius, which defines the

characteristic correlation length of plasma particles).

The first term in (3) describes the evolution of the distribution function in the self-
consistent field approximation, and the term with the collision integral in the exponent defines
the deceleration (acceleration) of a plasma particle due to the self-consistent field. The other

terms describe the effect of the collision integral on the plasma kinetics.

If an external force is so high that Fr, >U(z,, ), the effect of such a force on the

correlation function should be regarded [1].

IF a relativistic effects in plasma are essential, one should substitute the relativistic
expression for the kinetic energy of a particle into (3) and take into consideration both the scalar
and the vector potentials of scatterers. The correlation functions of the particles should also be

relativistic [1].

For a quantum plasma, when calculating the path integral, which defines the propagator,
one must consider the contributions of all trajectories rather than of the classical trajectory alone.
Statistical averaging is carried out over the density matrix. In the polarization approximation, the
quantum correlation function is expressed through one-particle density matrices in the Wigner

representation ([1], part 3 and Refs. therein). The averaged propagator is given by
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where
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R(t)=R
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is the collision volume.

For a rarefied plasma, the path integrals for scattering particles in (5) and (6) can be
calculated in terms of the perturbation theory [2] (the zero order is sufficient). The averaged
effect of scatterers on a probe particle is also found from the perturbation theory. Exchange

interaction is included in the quantum correlation function.

To conclude, expressions (3) and (5) can be considered as a solution to the Kkinetic

problems for short times, i.e., when the distribution function varies insignificantly.
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