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Highly magnetized pure electron plasmas in Malmberg-Penning traps [1] provide the oppor-
tunity to experimentally investigate two-dimensional (2D) fluid turbulence. In fact, under suit-
able experimental conditions, the transverse dynamics of the electron plasma column is well
described by the drift-Poisson equations [2], which are isomorphic to the 2D Euler equations
for an incompressible, inviscid fluid, whose vorticity corresponds, up to a constant of propor-
tionality, to the electron plasma density. In recent years, the scaling properties and dynamics
of 2D turbulence in electron plasmas have been investigated both by Fourier transform [3] and
wavelet analysis [4, 5]. In this work the scaling and statistical properties of freely decaying 2D
turbulence in a pure electron plasma confined in a Malmberg-Penning trap are studied experi-
mentally. The intermittency properties of turbulence are investigated by analyzing the probabil-
ity density functions and the structure functions of plasma density (vorticity) increments. The
occurrence of the Yaglom law for the third-order mixed moment involving the plasma density
and the drift velocity is also studied.

The experimental data have been obtained in the Malmberg-Penning trap ELTRAP [6]. A low
density (n = 102—-108 m—3) and temperature (7' =1 — 10 eV) electron plasma is generated by
a thermoionic spiral cathode heated with a constant current and negatively biased with respect to
a grounded grid. The voltage drop across the filament and the source bias set the initial plasma
radius, shape and density. The electrons are axially trapped within a stack of hollow conducting
cylinders (with radius Ry = 4.5 cm) by two static negative voltages at the trap ends, and radially
confined by an axial magnetic field B which keeps the charged column in equilibrium rotation.
After being injected into the device, the electrons are trapped for a given time and then dumped
onto a phosphor screen. The light emitted by the screen is collected by a 12 bit charge-coupled
device (CCD) camera, so that the light intensity measured at a given position on the CCD
sensor is proportional to the axially averaged electron density. A 2D image acquired by the

CCD thus provides the density distribution and represents also the vorticity £ (x,y,#) of the 2D
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Figure 1: Snapshots of the plasma density for the analysed sequence. The trapping time is

indicated at the top left corner of each frame.

fluid. The time evolution is studied by repeating the above described cycle several times with
fixed injection parameters and increasing the trapping time T. The shot-to-shot reproducibility
of the initial conditions is very high, as the typical variation of the measured charge at a given
position is less than 0.1 %. The sequence under study in this work consists of N = 250 frames
with a trapping time step of 2 us. A few snapshots of the plasma density are shown in Fig. 1.
The first frame (trapping time T = 2 us) reflects the shape of the spiral cathode distorted by the
diocotron instability, which rapidly leads to a nonlinear evolution of the flow.

In turbulence studies, the analysis of the scaling properties of the field increment statistics
provides information about the presence of coherent structures, such as vortices or shocks, and
about their typical spatial scales [7]. For a turbulent field u(r,#) the increments across a scale
separation I are defined as Au;(r,t) = u(r+1,t) —u(r,t). In the present work the focus is on the
properties of the 2D vorticity {(x,y,?) in a pure electron plasma. We thus analyze the scaling

behaviour of the increments in both x and y directions

AC;X)(xa))?t) = C(x—i—l,y,t)—@(x,y,t),
ALY (eyt) = Ly ) —Clant) .

Two standard ways to study the statistics of field increments and the intermittency effects in
turbulent flows are the structure functions and the Probability Density Functions (PDFs). Struc-
ture functions are defined as the moments of field increments, that is, S,(I) = (AL), where
() denotes spatial averages. A measure of the intermittency of field increments is given by
the flatness F, the ratio of the 4th order moment to the square of the 2nd order moment,
F(I) = S4(1)/[S2(1)]*. The flatness is 3 by definition for a Gaussian PDF. The flatness of the
vorticity increments along the x and y directions for different trapping times is shown in Fig.
2. Fort =2 us F is very close to 3 at all scales. As T increases, F becomes larger and larger

and, most importantly, a significant increase of F is found in the range 1.5 mm </ < 8§ mm,
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Figure 2: Flatness of the vorticity increments along the x (left panel) and y (right panel) direc-
tions for different trapping times: 2 us (red curve), 80 us (green curve), 240 s (blue curve),

400 ps (black curve).

indicating that intermittency gets stronger as turbulence developes. For / < 1.5 mm, F decreases
and tends towards 3, probably due to the effect of instrumental noise. The PDFs of the standard-
ised vorticity increments Al along the x direction for T = 80 1s and T = 400 us are shown
in Fig. 3. The PDFs of increments along the y direction have similar shapes. Fig. 3 shows that
the intermittency increase is related to the development of non-Gaussian tails produced by the
turbulence evolution.

The mixed third order structure functions Y3(x) ()= (Avl(x) [AL l(x)]2> and Y3(y ) ()= (Avl(y ) (A l(y )]2>

were also studied, where Avl(x) =v(x+1,y,t) — ve(x,y,t) and Avl(y) =vy(x,y+1,1) —vy(x,0,1).
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Figure 3: PDFs of the standardised vorticity increments AZ; along the x direction for T = 80 s
(left panel) and T = 400 Ws (right panel) and for different spatial separations /: / = 0.98 mm
(black solid curve), I = 4.9 mm (red curve), [ = 9.8 mm (green curve). The Gaussian PDF with

zero mean and ¢ = 1 is also shown for comparison (black dashed curve).
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The velocity field v(x,y) is calculated from the

electrostatic potential ¢ (x,y), obtained by solving  — 1000
= [
numerically the Poisson equation with the mea- = ¢100¢:
: S :
sured plasma density field n(x,y). For homoge- = [
% 0.010F
neous, stationary, isotropic turbulence, forced at 1= g
I L
large scales, the analog of the Yaglom law Y3(/) = 0.001 S
‘ ‘ o 2 4 6 8 10 12
—(4/3)n! is expected to hold in the inertial range ! [mm]

of turbulence[8], n being the enstrophy dissipation

rate. The typical behaviour of ¥3(/) obtained for the Figure 4: Compensated third order mixed
experiment considered in this work is reported in structure functions —Y3(x)(l) /1 for trap-
Fig. 4. It can be seen that the range of scales where ping time T = 80 s.

Y3(1) follows the behaviour expected from Yaglom

law is rather short.

In conclusion, in the present work the scaling properties of 2D turbulence in a pure electron
plasma were studied. It was shown that, as the turbulence evolution proceeds, intermittency
increases, due to the development of strong fluctuations which give rise to non-Gaussian tails
in the PDFs of vorticity increments.
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