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Highly magnetized pure electron plasmas in Malmberg-Penning traps [1] provide the oppor-

tunity to experimentally investigate two-dimensional (2D) fluid turbulence. In fact, under suit-

able experimental conditions, the transverse dynamics of the electron plasma column is well

described by the drift-Poisson equations [2], which are isomorphic to the 2D Euler equations

for an incompressible, inviscid fluid, whose vorticity corresponds, up to a constant of propor-

tionality, to the electron plasma density. In recent years, the scaling properties and dynamics

of 2D turbulence in electron plasmas have been investigated both by Fourier transform [3] and

wavelet analysis [4, 5]. In this work the scaling and statistical properties of freely decaying 2D

turbulence in a pure electron plasma confined in a Malmberg-Penning trap are studied experi-

mentally. The intermittency properties of turbulence are investigated by analyzing the probabil-

ity density functions and the structure functions of plasma density (vorticity) increments. The

occurrence of the Yaglom law for the third-order mixed moment involving the plasma density

and the drift velocity is also studied.

The experimental data have been obtained in the Malmberg-Penning trap ELTRAP [6]. A low

density (n = 1012−1013 m−3) and temperature (T = 1−10 eV) electron plasma is generated by

a thermoionic spiral cathode heated with a constant current and negatively biased with respect to

a grounded grid. The voltage drop across the filament and the source bias set the initial plasma

radius, shape and density. The electrons are axially trapped within a stack of hollow conducting

cylinders (with radius RW = 4.5 cm) by two static negative voltages at the trap ends, and radially

confined by an axial magnetic field B which keeps the charged column in equilibrium rotation.

After being injected into the device, the electrons are trapped for a given time and then dumped

onto a phosphor screen. The light emitted by the screen is collected by a 12 bit charge-coupled

device (CCD) camera, so that the light intensity measured at a given position on the CCD

sensor is proportional to the axially averaged electron density. A 2D image acquired by the

CCD thus provides the density distribution and represents also the vorticity ζ (x,y, t) of the 2D
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Figure 1: Snapshots of the plasma density for the analysed sequence. The trapping time is

indicated at the top left corner of each frame.

fluid. The time evolution is studied by repeating the above described cycle several times with

fixed injection parameters and increasing the trapping time τ . The shot-to-shot reproducibility

of the initial conditions is very high, as the typical variation of the measured charge at a given

position is less than 0.1 %. The sequence under study in this work consists of N = 250 frames

with a trapping time step of 2 µs. A few snapshots of the plasma density are shown in Fig. 1.

The first frame (trapping time τ = 2 µs) reflects the shape of the spiral cathode distorted by the

diocotron instability, which rapidly leads to a nonlinear evolution of the flow.

In turbulence studies, the analysis of the scaling properties of the field increment statistics

provides information about the presence of coherent structures, such as vortices or shocks, and

about their typical spatial scales [7]. For a turbulent field u(rrr, t) the increments across a scale

separation lll are defined as ∆ulll(rrr, t) = u(rrr + lll, t)−u(rrr, t). In the present work the focus is on the

properties of the 2D vorticity ζ (x,y, t) in a pure electron plasma. We thus analyze the scaling

behaviour of the increments in both x and y directions

∆ζ (x)
l (x,y, t) = ζ (x + l,y, t)−ζ (x,y, t) ,

∆ζ (y)
l (x,y, t) = ζ (x,y + l, t)−ζ (x,y, t) .

Two standard ways to study the statistics of field increments and the intermittency effects in

turbulent flows are the structure functions and the Probability Density Functions (PDFs). Struc-

ture functions are defined as the moments of field increments, that is, Sp(l) = 〈∆ζ p
l 〉, where

〈·〉 denotes spatial averages. A measure of the intermittency of field increments is given by

the flatness F , the ratio of the 4th order moment to the square of the 2nd order moment,

F(l) = S4(l)/[S2(l)]2. The flatness is 3 by definition for a Gaussian PDF. The flatness of the

vorticity increments along the x and y directions for different trapping times is shown in Fig.

2. For τ = 2 µs F is very close to 3 at all scales. As τ increases, F becomes larger and larger

and, most importantly, a significant increase of F is found in the range 1.5 mm ≤ l ≤ 8 mm,
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Figure 2: Flatness of the vorticity increments along the x (left panel) and y (right panel) direc-

tions for different trapping times: 2 µs (red curve), 80 µs (green curve), 240 µs (blue curve),

400 µs (black curve).

indicating that intermittency gets stronger as turbulence developes. For l ≤ 1.5 mm, F decreases

and tends towards 3, probably due to the effect of instrumental noise. The PDFs of the standard-

ised vorticity increments ∆ζst along the x direction for τ = 80 µs and τ = 400 µs are shown

in Fig. 3. The PDFs of increments along the y direction have similar shapes. Fig. 3 shows that

the intermittency increase is related to the development of non-Gaussian tails produced by the

turbulence evolution.

The mixed third order structure functions Y (x)
3 (l) = 〈∆v(x)

l [∆ζ (x)
l ]2〉 and Y (y)

3 (l) = 〈∆v(y)
l [∆ζ (y)

l ]2〉
were also studied, where ∆v(x)

l = vx(x + l,y, t)− vx(x,y, t) and ∆v(y)
l = vy(x,y + l, t)− vy(x,y, t).

Figure 3: PDFs of the standardised vorticity increments ∆ζst along the x direction for τ = 80 µs

(left panel) and τ = 400 µs (right panel) and for different spatial separations l: l = 0.98 mm

(black solid curve), l = 4.9 mm (red curve), l = 9.8 mm (green curve). The Gaussian PDF with

zero mean and σ = 1 is also shown for comparison (black dashed curve).
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Figure 4: Compensated third order mixed

structure functions −Y (x)
3 (l)/l for trap-

ping time τ = 80 µs.

The velocity field vvv(x,y) is calculated from the

electrostatic potential φ(x,y), obtained by solving

numerically the Poisson equation with the mea-

sured plasma density field n(x,y). For homoge-

neous, stationary, isotropic turbulence, forced at

large scales, the analog of the Yaglom law Y3(l) =

−(4/3)η l is expected to hold in the inertial range

of turbulence[8], η being the enstrophy dissipation

rate. The typical behaviour of Y3(l) obtained for the

experiment considered in this work is reported in

Fig. 4. It can be seen that the range of scales where

Y3(l) follows the behaviour expected from Yaglom

law is rather short.

In conclusion, in the present work the scaling properties of 2D turbulence in a pure electron

plasma were studied. It was shown that, as the turbulence evolution proceeds, intermittency

increases, due to the development of strong fluctuations which give rise to non-Gaussian tails

in the PDFs of vorticity increments.

This work was supported by the Italian Ministry for Education, University and Research

PRIN 2007 funds.

References

[1] J.H. Malmberg and J.S. deGrassie, Phys. Rev. Lett. 35, 577 (1975)

[2] C.F. Driscoll and K.S. Fine, Phys. Fluids B 2, 1359 (1990)

[3] Y. Kawai, Y. Kiwamoto , Y. Soga and J. Aoki, Phys. Rev. E 75, 066404 (2007)

[4] Y. Kawai and Y. Kiwamoto, Phys. Rev. E 78, 036401 (2008)

[5] G. Bettega , R. Pozzoli and M. Romé, New J. Phys. 11, 056003 (2009)

[6] M. Amoretti, G. Bettega, F. Cavaliere, M. Cavenago, F. De Luca, R. Pozzoli and M. Romé,

Rev. Sci Instrum. 74, 3991 (2003)

[7] U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press,

Cambridge (2003)

[8] A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics, Vol. 2, The MIT press, Cam-

bridge, (1975)

37th EPS Conference on Plasma Physics P4.406


