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1. Introduction

Historically, the equations of plasma physics have generally been studied using inertial refer-

ence frames, in which the equations of Newton and Maxwell have their simplest form. However,

tokamak plasmas often rotate at velocities comparable to the ion thermal speed [1], while much

higher rotation rates are encountered in some astrophysical plasmas [2] and inertially-confined

fusion plasmas are subject to extreme accelerations [3]. The observed behaviour of such sys-

tems is likely to be better understood by considering the equations determining their evolution in

suitable non-inertial frames. We have formulated the Lorentz, Vlasov, guiding centre and fluid

equations in an arbitrary accelerating frame, and applied this analysis to a toroidally-rotating

tokamak plasma [4,5]. Brizard [6] derived the gyrokinetic equation for such a plasma using an

effective magnetic field that depends on particle velocity.Our analysis provides the basis for an

alternative approach to gyrokinetic theory in non-inertial frames, whereby particle motions are

referred to an effective magnetic field that is independent of particle velocity.

2. Charged particle motion in non-inertial frames

Neglecting the emission and absorption of radiation, the action for a particle of rest massm and

chargeZe in an electromagnetic fieldAµ can be written in the covariant form

S =−
∫ τfin

τin

[mvµvµ +ZeAµ vµ ]dτ, (1)

whereτin, τfin denote proper times andvµ is the particle four-velocity. In Minkowski spacetime

vµ = γ(c,v)whereγ = (1−v2/c2)−1/2 andAµ = (Φ/c,−A)whereΦ andA are the electrostatic

and magnetic vector potentials; the action then reduces to

S =
∫ tfin

tin
L dt, (2)

wheretin, tfin denote coordinate times andL =−mc2(1− v2/c2)1/2+Ze(v ·A−Φ) is the La-

grangian. Requiring that the particle trajectory betweentin andtfin be such thatS has a stationary

value (Hamilton’s principle of least action), we obtain theEuler-Lagrange equations

d
dt

(
∂L

∂vi

)
=

∂L

∂xi
, (3)

wherexi is a general space coordinate andvi = dxi/dt. We now letv andV denote nonrelativistic

particle velocities in the laboratory frame and a frame moving at nonrelativistic but otherwise
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arbitrary velocityu f relative to the laboratory, so thatu f = v−V. The manifest invariance of

Aµvµ indicates thatA · v−Φ is invariant in the nonrelativistic limit. SinceAµ is a four-vector,

the potentials in the flow and laboratory frames are related by the expressions

A f = Alab, Φ f = Φlab−Alab ·u f , (4)

and the frame-invariant Lagrangian can be written as

L =
1
2

mV 2+ZeV ·
[
A f +

m
Ze

u f

]
−Ze

[
Φ f −

mu2
f

2Ze

]
≡ 1

2
mV 2+ZeV ·A∗−ZeΦ∗, (5)

where

A∗ = A f +
m
Ze

u f , Φ∗ = Φ f −
mu2

f

2Ze
. (6)

Substituting Eq. (5) into Eq. (3) we obtain the equations of motion

m
dV
dt

= Ze(E∗+V×B∗) , (7)

where the effective fields are

E∗ =−∇Φ∗−
∂A∗
∂ t

= E f −
m
Ze

∂u f

∂ t
+

m
2Ze

∇u2
f , (8)

B∗ = ∇×A∗ = B f +
m
Ze

W f . (9)

HereW f = ∇×u f is the vorticity of the frame flow, andE f , B f are the electric and magnetic

fields in the flow frame. In the nonrelativistic limitB f = Blab≡ B. There is a generalized Corio-

lis force, which does no work on the particle, a generalized centrifugal force and a pseudo-force

associated with the time-dependence of the frame flow.

The above analysis can be applied to a frame whose velocity isspatially uniform but changing

in time. In the absence of electromagnetic fields Eq. (7) thenreduces to

dV
dt

=−∂u f

∂ t
. (10)

The frame acceleration provides an effective gravity that drives a Rayleigh-Taylor instability in

inertially-confined plasmas [3]. For a frame rotating at a uniform and constant rateω we have

u f = ω ×R, whereR is position in the rotating frame,W f = 2ω and

m
dV
dt

= Ze

[
E f +

m
Ze

∇
(

ω2R2

2

)
+V×

(
B+

2m
Ze

ω
)]

. (11)

If B is uniform the velocity-dependent force vanishes in a framerotating atω = −ZeB/2m ≡
−Ωc/2 (becauseB∗ = 0) and in a frame rotating atω =−Ωc (becauseV = 0).
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3. Kinetic and guiding-centre equations in non-inertial frames

In the absence of collisions, a particle distribution function in the moving framef satisfies the

Vlasov equation [4]
∂ f
∂ t

+V ·∇ f +
Ze
m

(E∗+V×B∗) ·
∂ f
∂V

= 0. (12)

This can be used to obtain reduced kinetic (e.g. drift-kinetic, gyrokinetic) and fluid descriptions

of the plasma, respectively by averaging over particle orbits and by taking velocity-space mo-

ments. In the absence of collisions the guiding centre velocity in the moving frameVgc satisfies

m
dVgc

dt
= ZeVgc ×B∗+ZeE∗−µ∗∇B∗, (13)

whereµ∗ is magnetic moment defined in terms of gyromotion aroundB∗.

4. Application to rotating tokamak plasmas

Using Eq. (13) it can be shown that heavy impurity ions in transonically-rotating tokamak plas-

mas are centrifugally trapped on the low field side of the plasma, with a bounce frequency [5]

ωb ≃ ω
(

r
Rq2

)1/2(
1− ZmiTe

mZ(Te +Ti)

)1/2

≡ ε1/2ω∗
q

, (14)

wheremi is bulk ion mass,Te andTi are electron and bulk ion temperatures,ε = r/R is inverse

aspect ratio,q is safety factor andmZ, Ze denote impurity ion mass and charge. Moreover the

effective flux surfaces for low charge states of heavy impurity ions can differ significantly from

laboratory frame flux surfaces [5], implying better confinement of impurity ions in plasmas

rotating counter to the plasma current than in those rotating in the co-current direction (Fig. 1).

(a) (b) (c)

R (m)

Z
(m

)

Fig. 1 Effective flux surfaces for W20+ ions in (a) stationary, (b) counter-rotating and (c) co-
rotating MAST-like plasmas.

Considering momentum balance for impurity ions in a frame co-rotating with bulk ions, one

can infer a radially-outward advection velocity [5]

vR ≃ e2m1/2
i mZq2ω2

∗Rn lnΛ

6
√

2π3/2ε2
0ε2B2T 3/2

i

[
1+2

q
ε

ω
ΩZ

]−2

, (15)
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in the usual notation, whereΩZ is impurity ion cyclotron frequency. This result is consistent

with test-particle simulations of collisional impurity transport (Fig. 2), and may have important

implications for the retention of fusion-relevant impurities such as tungsten.

t (ms)

〈δ
R
〉(

m
)

Fig. 2 Mean excursion of impurity ions withA = 184,Z = 20 (solid squares) andA = 92,Z =
10 (open squares) in simulation of test-particle orbits in counter-rotating MAST-like plasma.

5. Conclusions

The equation of motion of a charged particle can be written inidentical form in non-relativistic

inertial and non-inertial frames, with the effective electromagnetic fields in the latter depending

on both the Maxwell fields and the frame flowu f . Generalized Coriolis and centrifugal forces

introduce additional terms(m/Ze)u f and−mu2
f /(2Ze) in the effective vector and scalar poten-

tials. In a toroidally-rotating tokamak plasma the Coriolis force shifts the effective flux surfaces

while the centrifugal force enhances particle trapping on the low field side. Vlasov, gyroki-

netic, guiding centre and fluid equations can be derived as inan inertial frame, using effective

fields and potentials. The analysis can also be extended to include relativistic effects, making it

applicable to astrophysical plasmas such as pulsar magnetospheres [2].
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