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The gyromotion of particles in toroidal plasmas is characterized by a Larmor radius
ρ generally much smaller than the scale-length LB of the magnetic field non-uniformity.
In this case the particle orbits can be parametrized by a constant of the motion - the
energy E - and one adiabatic invariant, the magnetic moment µ. Using the ordering
εB ≡ ρ/LB � 1, Lie-transforms methods were applied to derive a guiding-center (GC)
Fokker-Planck (FP) operator in the local GC coordinates (X, E , µ, ϕ), where X is the GC
position and ϕ is the gyroangle [1]. This transformation was applied to the case of a
collision operator with an isotropic and uniform field particles distribution [1].

For axisymmetric plasmas where the toroidal canonical momentum Pφ is also an in-
variant of the motion, an equivalent CG FP operator was derived in a new set of GC
coordinates Zα = (ψ̄, θ, p, ξ0) that are well-suited for numerical applications [2]. Here the
flux-surface label ψ̄ ≡ −cPφ/e and the particle momentum p ≡

√
2mE are constant of the

motion, the pitch-angle coordinate ξ0 defined as

ξ0(ψ̄, E , µ) ≡
{ √

1− µB0(ψ̄)/E . for trapped particle orbits
σ
√

1− µB0(ψ̄)/E . for passing particle orbits

∣∣∣∣∣ (1)

is an adiabatic invariant, and the poloidal angle θ parametrizes the position along the
GC orbit. In (1), B0(ψ) is the minimum value of the magnetic field amplitude on the
flux-surface ψ.

In the present paper, the GC FP operator is transformed such that it can commute with
the orbit-averaging operation. In the low-collisionality regime, a 3-D bounce-averaged
FP equation is thus obtained in the space of invariants Ia = (ψ̄, p, ξ0). In addition, a
FP collision operator with a non-uniform field particles distribution is explicitly derived
in the Ia coordinates. Simplified expression are also obtained in the thin-orbit width
approximation characterized by εψ ≡ εBq/ε� 1, where q is the safety factor and ε = r/R

is the local inverse aspect ratio.

GC FP equation in Zα coordinates

The GC FP evolution equation in Zα coordinates is given by [2]

ετ
∂F

∂τ
+ θ̇

∂F

∂θ
= ενCgc (F ) (2)
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where F = F (τ, ψ̄, θ, p, ξ0) is the GC distribution function, θ̇ characterizes the poloidal
GC motion, εν = LB/λν where λν is the mean-free pass, and the collision operator is

Cgc (F ) = − 1

J
∂

∂Zα

[
J
(
Kα
gcF −Dαβ

gc
∂F

∂Zβ

)]
(3)

where J is the Jacobian of the transformation, and Kαgc and Dαβ
gc are the GC convection

and diffusion coefficients, respectively. They are obtained from particle convection and
diffusion coefficients using the transformation T−1 from particle to GC space and the
projection vectors ∆α to Zα coordinates according to [1]

Kα
gc =

〈
T−1K ·∆α

〉
g

Dαβ
gc =

〈
(∆α)T ·T−1D ·∆β

〉
g

(4)

where 〈· · · 〉g denotes gyro-averaging.
The GC projection vectors in Ia = (ψ̄, p, ξ0) space are given by

∆ψ̄ = εB
b̂

mΩ
×∇ψ̄ − εψ

δψ

p2ξ2
pε + εψ

Ωδψ

2µB

1− ξ2

ξ2

∂ρε
∂ϕ

+O(ε2B)

∆p =
pε
p

+O(ε2B)

∆ξ0 =
1− ξ2

0

2ξ0

(
pε
mE −

Ω

µB

∂ρε
∂ϕ
−∆ψ̄ d lnB0

dψ̄

)
+O(ε2B)

(5)

where pε = T−1p, ρε = T−1ρ, Ω is the gyrofrequency, ξ = σ
√

1− (1− ξ2
0)B/B0(ψ̄) is

the local pitch-angle coordinate, and δψ = ψ − ψ̄ is the local orbit width.

Orbit-averaged GC FP equation

The orbit-averaging (OA) operation is expressed as

〈· · · 〉O =
1

τO

∮

O

dθ

θ̇
· · · (6)

where τO is the orbit time. We formally introduce the function

G(θ, ψ̄, p, ξ0) ≡ σJ θ̇τO
2πJO

(7)

where the OA-Jacobian JO ≡ τOvp
2|ξ0|/(2πB0(ψ̄)) and τO are invariants of the GC mo-

tion.
We find that G(θ, ψ̄, p, ξ0) = 1 +O(εψεB), meaning that the θ-dependence in the prod-

uct J θ̇ is of order εψεB. In the general case where εψ ∼ 1, these θ-dependent corrections
in G are of the same order as the GC corrections in Kαgc and Dαβ

gc. Yet, it is possible
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to transform the GC FP equation (2) such that it commutes with the orbit-averaging
operation (6), which yields, in the low-collisionality regime εν � 1

ετ
∂F (0)

∂τ
=
〈
Cgc

(
F (0)

)〉
O
≡ −εν

1

JO
∂

∂Ia

(
JO
[
K
a(0)
gc F

(0) −Dab(0)
gc

∂F (0)

∂Ib

])
+ ενM

(0)
gcF

(0)

(8)
with

K
a(0)
gc =

〈
Ka
gc
〉
O

+

〈
Daβ
gcG

∂G−1

∂Zβ

〉

O

D
ab(0)
gc =

〈
Dab
gc
〉
O

M
(0)
gc =

1

JO
∂

∂Ia

[
JO
〈
Daβ
gcG

∂G−1

∂Zβ

〉

O

]
+

〈
Kα
gcG

∂G−1

∂Zα

〉

O

(9)

where F = F (0)(τ, ψ̄, p, ξ0) is independent of θ. According to the equation (8) the distri-
bution thus evolves on the collision time scale : ετ = εν .

In the thin-orbit width approximation where εψ � 1, (8) simplifies as M (0)
gc = 0 and

K
a(0)
gc =

〈
Kagc

〉
O
.

GC collision operator with isotropic non-uniform field particles
The particle convection and diffusion coefficients for a collision operator with isotropic

field particles can be expressed as [1]

K = −νp

D = Dt

(
I− pp

p2

)
+Dl

pp

p2

(10)

where the convection coefficient ν and diffusion coefficients D‖ and D⊥ are function of
(p,x) only such that the transformation to GC coefficients yields [1]

νε (Z) = ν (p,X + ρε) = ν (p,X) + εn,Tρε ·∇ν

Dtε (Z) = Dt (p,X + ρε) = Dt (p,X) + εn,Tρε ·∇Dt

Dlε (Z) = Dl (p,X + ρε) = Dl (p,X) + εn,Tρε ·∇Dl

(11)

since the particle momentum and GC momentum are identical up to order εB. We can
assume from now on that εB ∼ εn,T ∼ ε.
Orbit-averaged GC collision operator for numerical applications

In the thin-orbit approximation εψ � 1, the orbit-averaged GC FP operator (8) can
be expressed under the following conservative form [2], which is adequate for numerical
implementation in a 3-D FP code

〈
Cgc

[
f (0)
]〉
O

= − 1

JO
∂

∂ψ̄

(
JO
∥∥∇ψ̄

∥∥
0
Sψ̄L

)
− 1

JO
∂

∂p

(
JOSpL

)
+

1

JOp
∂

∂ξ0

(
JO
√

1− ξ2
0S

ξ0

L

)

(12)
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The Ia space fluxes are expressed in terms of OA-GC convection and diffusion coefficients



Sψ̄L
SpL
Sξ0L


 ≡




K ψ̄

L
Kp

L
Kξ0

L


F (0) −




Dψ̄ψ̄

L Dψ̄p

L Dψ̄ξ0

L
Dpψ̄

L Dpp

L Dpξ0

L
Dξ0ψ̄

L Dξ0p

L Dξ0ξ0

L







∥∥∇ψ̄
∥∥

0
∂/∂ψ̄

∂/∂p

−p−1
√

1− ξ2
0∂/∂ξ0


F (0)

(13)
For collisions with non-uniform isotropic field particle distributions, these coefficients

are explicitly derived from (4), (5), (9) and (11)

(
Kp

L
Dpp

L

)
=

(
1 + εψδψ

(0) ∂

∂ψ

)( −νp
Dl

)
+O(ε2, ε2ψ, εεψ) (14)

(
Kξ0

L
Dpξ0

L

)
=

(
−νp
Dl

)√
1− ξ2

0

2ξ0

(
εψδψ

(0)
+ ελ

(0)
gc
)

+O(ε2, ε2ψ, εεψ) (15)




K ψ̄

L
Dpψ̄

L
Dξ0ψ̄

L


 = −εψ

δψ(0)

p
∥∥∇ψ̄

∥∥
0




−νp
Dl

−
√

1− ξ2
0Dt/ξ0


+O(ε2, ε2ψ, εεψ) (16)

Dψ̄ψ̄

L = O(ε2, ε2ψ, εεψ) (17)

Dξ0ξ0

L =

[
∆† − ελ(0)†

gc + εψ

(
δψ

(0) (1− ξ2
0)

ξ2
0

+ δψ(0)† ∂

∂ψ

)]
Dt +O(ε2, ε2ψ, εεψ) (18)

where δψ(0), δψ(0)†, δψ(0), λ(0)
gc, λ

(0)†
gc and ∆† are bounce-averaging coefficients to be cal-

culated from particle orbits. Note that to leading order we retrieve the usual collision
operator in the zero-orbit width limit.

The implementation of this operator in the 3-D Fokker-Planck code LUKE [3] is un-
der way. It will describe neoclassical transport and thus include the bootstrap current
consistently with other sources (radio-frequency, ohmic heating) in general current drive
calculations.
References

[1] A. J. Brizard. A guiding-center fokker-planck collision operator for nonuniform
magnetic fields. Phys. Plasmas, 11, 4429 (2004).

[2] A. J. Brizard, J. Decker, Y. Peysson, and F. X. Duthoit. Orbit-averaged guiding-
center Fokker-Planck operator. Phys. Plasmas, 16, 102304 (2009).

[3] J. Decker and Y. Peysson. DKE: A fast numerical solver for the 3-D drift kinetic
equation. Report EUR-CEA-FC-1736, Euratom-CEA, 2004.

37th EPS Conference on Plasma Physics P5.148


