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The gyromotion of particles in toroidal plasmas is characterized by a Larmor radius
p generally much smaller than the scale-length Lp of the magnetic field non-uniformity.
In this case the particle orbits can be parametrized by a constant of the motion - the
energy £ - and one adiabatic invariant, the magnetic moment p. Using the ordering
ep = p/Lp < 1, Lie-transforms methods were applied to derive a guiding-center (GC)
Fokker-Planck (FP) operator in the local GC coordinates (X, &, p, ), where X is the GC
position and ¢ is the gyroangle [1|. This transformation was applied to the case of a
collision operator with an isotropic and uniform field particles distribution [1].

For axisymmetric plasmas where the toroidal canonical momentum F, is also an in-
variant of the motion, an equivalent CG FP operator was derived in a new set of GC
coordinates Z% = (¢, 0, p, &) that are well-suited for numerical applications [2]. Here the
flux-surface label ¢ = —cP;/e and the particle momentum p = V2mé are constant of the

motion, the pitch-angle coordinate &, defined as

V1 —puBo(y)/E. for trapped particle orbits
o\/1 — uBy(¢)/E. for passing particle orbits

S, &, 1) = { (1)
is an adiabatic invariant, and the poloidal angle # parametrizes the position along the
GC orbit. In (1), By() is the minimum value of the magnetic field amplitude on the
flux-surface .

In the present paper, the GC FP operator is transformed such that it can commute with
the orbit-averaging operation. In the low-collisionality regime, a 3-D bounce-averaged
FP equation is thus obtained in the space of invariants I? = (¢, p,&). In addition, a
FP collision operator with a non-uniform field particles distribution is explicitly derived
in the I* coordinates. Simplified expression are also obtained in the thin-orbit width
approximation characterized by €, = epq/e < 1, where ¢ is the safety factor and e = /R

is the local inverse aspect ratio.
GC FP equation in Z“ coordinates

The GC FP evolution equation in Z% coordinates is given by [2]

OF .OF
ETE + ‘9% = GVCgC (F) (2)
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where F' = F(1,v,0,p,&) is the GC distribution function, 0 characterizes the poloidal

GC motion, €, = Lg/)\, where ), is the mean-free pass, and the collision operator is

1 0 N ap OF
where J is the Jacobian of the transformation, and Kg. and Dg(’é are the GC convection
and diffusion coefficients, respectively. They are obtained from particle convection and
diffusion coefficients using the transformation T~! from particle to GC space and the

projection vectors A% to Z® coordinates according to [1]

Kge = (T'K-A%)

Dyl =((an" . T'p. M>g

where (---)  denotes gyro-averaging.

The GC projection vectors in 1% = (1, p, &) space are given by

~
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where p. = T~ 'p, p. = T 'p, Q is the gyrofrequency, & = o\/1 — (1 — &)B/By(¢) is
the local pitch-angle coordinate, and dv) = 1 — ) is the local orbit width.

Orbit-averaged GC FP equation

The orbit-averaging (OA) operation is expressed as

<"'>o=i]{d9"' (6)

To Jo 0
where 7p is the orbit time. We formally introduce the function

oJ 6’7’0
2rJo

g(&&apa 50) (7)

where the OA-Jacobian Jo = Tovp?|&o|/(2mBo(v))) and 7o are invariants of the GC mo-
tion.

We find that G(0,v, p, &) = 1+ O(eyep), meaning that the f-dependence in the prod-
uct J6 is of order ey€p. In the general case where €, ~ 1, these f-dependent corrections

in G are of the same order as the GC corrections in Kg. and Dgg Yet, it is possible
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to transform the GC FP equation (2) such that it commutes with the orbit-averaging

operation (6), which yields, in the low-collisionality regime €, < 1

OF© 0 1 0 0 mav) OFY (0) (0
er—5— = (Cae (F")) = —& v ool (JO{ PO — D¢ WD+ v Mgc F
(8)
with

a a a g
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D = <D§%> 9)
©_ 1 oG~ o« ;097

Mge = 7 57 [jo< 9577 078 > 1 * <Kg€g aze /,

where F' = FO(1,4),p, &) is independent of §. According to the equation (8) the distri-

bution thus evolves on the collision time scale : €, = ¢,.

In the thin-orbit width approximation where €, < 1, (8) simplifies as Méc) = 0 and
a(0) a
Kge = <Kgc>o
GC collision operator with isotropic non-uniform field particles
The particle convection and diffusion coefficients for a collision operator with isotropic

field particles can be expressed as [1]

(10)
D= D, (H—@) + D22
P P2

where the convection coefficient v and diffusion coefficients D) and D, are function of

(p,x) only such that the transformation to GC coefficients yields [1]

ve(Z)=v(p,X+p)=v(p,X)+ e rp. - Vv
Dte (Z) :Dt <p7X+pe) :Dt (p7X)+€n,Tpe'VDt (11)
Dy (Z) = Dy (p, X+ p.) = Dy (p, X) + €nrp. - VDy

since the particle momentum and GC momentum are identical up to order eg. We can
assume from now on that eg ~ €, 7 ~ €.
Orbit-averaged GC collision operator for numerical applications

In the thin-orbit approximation €, < 1, the orbit-averaged GC FP operator (8) can
be expressed under the following conservative form [2|, which is adequate for numerical

implementation in a 3-D FP code

10 w10 1 9
{Cec [f(O)DO:_j_O@(joﬂvaoSii) 7o (JO L) Top 06 (jo 1—50550)

(12)



37" EPS Conference on Plasma Physics P5.148

The I space fluxes are expressed in terms of OA-GC convection and diffusion coefficients

J J 56 pir piE 7 7

L Ky, by by b Ivoll,0/0¢

st |=| kp |FO—| py* DP" DP 0/0p FO
Si° K{’ DYV Dyr P —p /1 - €20/0%

(13)
For collisions with non-uniform isotropic field particle distributions, these coefficients
are explicitly derived from (4), (5), (9) and (11)

K? ) 0 _
< D%J ) (1 + €00 ¢) ( P ) +O(6, €, ecy) (14)

o
< Ky ) _ ( —vp ) V=& (Ew@“)’ +6Agg) +0(2,6, cey) (15)

Diﬁo Dl 2&0
Ky, 550 P
o |- [ |roeide
5 p
DiW 0 —/1— éth/&]
Dﬁlﬁ = O(e?, €5, eey) (17)

DY = {N — e e (w 0 2&’) + op© (1)] Dy + O, €5, e60) - (18)
0

where 69 §ep(O1 W(O), /\g():’ )\géT and AT are bounce-averaging coefficients to be cal-
culated from particle orbits. Note that to leading order we retrieve the usual collision
operator in the zero-orbit width limit.

The implementation of this operator in the 3-D Fokker-Planck code LUKE [3] is un-
der way. It will describe neoclassical transport and thus include the bootstrap current
consistently with other sources (radio-frequency, ohmic heating) in general current drive
calculations.

References

[1] A. J. Brizard. A guiding-center fokker-planck collision operator for nonuniform
magnetic fields. Phys. Plasmas, 11, 4429 (2004).

[2] A. J. Brizard, J. Decker, Y. Peysson, and F. X. Duthoit. Orbit-averaged guiding-
center Fokker-Planck operator. Phys. Plasmas, 16, 102304 (2009).

[3] J. Decker and Y. Peysson. DKE: A fast numerical solver for the 3-D drift kinetic
equation. Report EUR-CEA-FC-1736, Euratom-CEA, 2004.



