

Orbit-averaged guiding-center Fokker-Planck operator for numerical applications in axisymmetric toroidal plasmas

J. Decker¹, Y. Peysson¹, A. J. Brizard², and F.-X. Duthoit¹

¹CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France.

²Dpmt. of Chemistry and Physics, Saint Michael's College, Colchester, VT 05439, USA

The gyromotion of particles in toroidal plasmas is characterized by a Larmor radius ρ generally much smaller than the scale-length L_B of the magnetic field non-uniformity. In this case the particle orbits can be parametrized by a constant of the motion - the energy \mathcal{E} - and one adiabatic invariant, the magnetic moment μ . Using the ordering $\epsilon_B \equiv \rho/L_B \ll 1$, Lie-transforms methods were applied to derive a guiding-center (GC) Fokker-Planck (FP) operator in the local GC coordinates $(\mathbf{X}, \mathcal{E}, \mu, \varphi)$, where \mathbf{X} is the GC position and φ is the gyroangle [1]. This transformation was applied to the case of a collision operator with an isotropic and uniform field particles distribution [1].

For axisymmetric plasmas where the toroidal canonical momentum P_ϕ is also an invariant of the motion, an equivalent CG FP operator was derived in a new set of GC coordinates $Z^\alpha = (\bar{\psi}, \theta, p, \xi_0)$ that are well-suited for numerical applications [2]. Here the flux-surface label $\bar{\psi} \equiv -cP_\phi/e$ and the particle momentum $p \equiv \sqrt{2m\mathcal{E}}$ are constant of the motion, the pitch-angle coordinate ξ_0 defined as

$$\xi_0(\bar{\psi}, \mathcal{E}, \mu) \equiv \left\{ \begin{array}{ll} \sqrt{1 - \mu B_0(\bar{\psi})/\mathcal{E}}. & \text{for trapped particle orbits} \\ \sigma \sqrt{1 - \mu B_0(\bar{\psi})/\mathcal{E}}. & \text{for passing particle orbits} \end{array} \right| \quad (1)$$

is an adiabatic invariant, and the poloidal angle θ parametrizes the position along the GC orbit. In (1), $B_0(\psi)$ is the minimum value of the magnetic field amplitude on the flux-surface ψ .

In the present paper, the GC FP operator is transformed such that it can commute with the orbit-averaging operation. In the low-collisionality regime, a 3-D bounce-averaged FP equation is thus obtained in the space of invariants $I^a = (\bar{\psi}, p, \xi_0)$. In addition, a FP collision operator with a non-uniform field particles distribution is explicitly derived in the I^a coordinates. Simplified expression are also obtained in the thin-orbit width approximation characterized by $\epsilon_\psi \equiv \epsilon_B q/\varepsilon \ll 1$, where q is the safety factor and $\varepsilon = r/R$ is the local inverse aspect ratio.

GC FP equation in Z^α coordinates

The GC FP evolution equation in Z^α coordinates is given by [2]

$$\epsilon_\tau \frac{\partial F}{\partial \tau} + \dot{\theta} \frac{\partial F}{\partial \theta} = \epsilon_\nu C_{\text{gc}}(F) \quad (2)$$

where $F = F(\tau, \bar{\psi}, \theta, p, \xi_0)$ is the GC distribution function, $\dot{\theta}$ characterizes the poloidal GC motion, $\epsilon_\nu = L_B/\lambda_\nu$ where λ_ν is the mean-free pass, and the collision operator is

$$C_{\text{gc}}(F) = -\frac{1}{\mathcal{J}} \frac{\partial}{\partial Z^\alpha} \left[\mathcal{J} \left(K_{\text{gc}}^\alpha F - D_{\text{gc}}^{\alpha\beta} \frac{\partial F}{\partial Z^\beta} \right) \right] \quad (3)$$

where \mathcal{J} is the Jacobian of the transformation, and K_{gc}^α and $D_{\text{gc}}^{\alpha\beta}$ are the GC convection and diffusion coefficients, respectively. They are obtained from particle convection and diffusion coefficients using the transformation \mathbf{T}^{-1} from particle to GC space and the projection vectors Δ^α to Z^α coordinates according to [1]

$$\begin{aligned} K_{\text{gc}}^\alpha &= \langle \mathbf{T}^{-1} \mathbf{K} \cdot \Delta^\alpha \rangle_g \\ D_{\text{gc}}^{\alpha\beta} &= \left\langle (\Delta^\alpha)^T \cdot \mathbf{T}^{-1} \mathbf{D} \cdot \Delta^\beta \right\rangle_g \end{aligned} \quad (4)$$

where $\langle \dots \rangle_g$ denotes gyro-averaging.

The GC projection vectors in $I^a = (\bar{\psi}, p, \xi_0)$ space are given by

$$\begin{aligned} \Delta^{\bar{\psi}} &= \epsilon_B \frac{\hat{\mathbf{b}}}{m\Omega} \times \nabla \bar{\psi} - \epsilon_\psi \frac{\delta\psi}{p^2 \xi^2} \mathbf{p}_\epsilon + \epsilon_\psi \frac{\Omega \delta\psi}{2\mu B} \frac{1 - \xi^2}{\xi^2} \frac{\partial \boldsymbol{\rho}_\epsilon}{\partial \varphi} + \mathcal{O}(\epsilon_B^2) \\ \Delta^p &= \frac{\mathbf{p}_\epsilon}{p} + \mathcal{O}(\epsilon_B^2) \\ \Delta^{\xi_0} &= \frac{1 - \xi_0^2}{2\xi_0} \left(\frac{\mathbf{p}_\epsilon}{m\mathcal{E}} - \frac{\Omega}{\mu B} \frac{\partial \boldsymbol{\rho}_\epsilon}{\partial \varphi} - \Delta^{\bar{\psi}} \frac{d \ln B_0}{d \bar{\psi}} \right) + \mathcal{O}(\epsilon_B^2) \end{aligned} \quad (5)$$

where $\mathbf{p}_\epsilon = \mathbf{T}^{-1} \mathbf{p}$, $\boldsymbol{\rho}_\epsilon = \mathbf{T}^{-1} \boldsymbol{\rho}$, Ω is the gyrofrequency, $\xi = \sigma \sqrt{1 - (1 - \xi_0^2)B/B_0(\bar{\psi})}$ is the local pitch-angle coordinate, and $\delta\psi = \psi - \bar{\psi}$ is the local orbit width.

Orbit-averaged GC FP equation

The orbit-averaging (OA) operation is expressed as

$$\langle \dots \rangle_O = \frac{1}{\tau_O} \oint_O \frac{d\theta}{\dot{\theta}} \dots \quad (6)$$

where τ_O is the orbit time. We formally introduce the function

$$\mathcal{G}(\theta, \bar{\psi}, p, \xi_0) \equiv \frac{\sigma \mathcal{J} \dot{\theta} \tau_O}{2\pi \mathcal{J}_O} \quad (7)$$

where the OA-Jacobian $\mathcal{J}_O \equiv \tau_O v p^2 |\xi_0| / (2\pi B_0(\bar{\psi}))$ and τ_O are invariants of the GC motion.

We find that $\mathcal{G}(\theta, \bar{\psi}, p, \xi_0) = 1 + \mathcal{O}(\epsilon_\psi \epsilon_B)$, meaning that the θ -dependence in the product $\mathcal{J} \dot{\theta}$ is of order $\epsilon_\psi \epsilon_B$. In the general case where $\epsilon_\psi \sim 1$, these θ -dependent corrections in \mathcal{G} are of the same order as the GC corrections in K_{gc}^α and $D_{\text{gc}}^{\alpha\beta}$. Yet, it is possible

to transform the GC FP equation (2) such that it commutes with the orbit-averaging operation (6), which yields, in the low-collisionality regime $\epsilon_\nu \ll 1$

$$\epsilon_\tau \frac{\partial F^{(0)}}{\partial \tau} = \langle C_{\text{gc}}(F^{(0)}) \rangle_O \equiv -\epsilon_\nu \frac{1}{\mathcal{J}_O} \frac{\partial}{\partial I^a} \left(\mathcal{J}_O \left[K_{\text{gc}}^{a(0)} F^{(0)} - D_{\text{gc}}^{ab(0)} \frac{\partial F^{(0)}}{\partial I^b} \right] \right) + \epsilon_\nu M_{\text{gc}}^{(0)} F^{(0)} \quad (8)$$

with

$$\begin{aligned} K_{\text{gc}}^{a(0)} &= \left\langle K_{\text{gc}}^a \right\rangle_O + \left\langle D_{\text{gc}}^{a\beta} \mathcal{G} \frac{\partial \mathcal{G}^{-1}}{\partial Z^\beta} \right\rangle_O \\ D_{\text{gc}}^{ab(0)} &= \left\langle D_{\text{gc}}^{ab} \right\rangle_O \\ M_{\text{gc}}^{(0)} &= \frac{1}{\mathcal{J}_O} \frac{\partial}{\partial I^a} \left[\mathcal{J}_O \left\langle D_{\text{gc}}^{a\beta} \mathcal{G} \frac{\partial \mathcal{G}^{-1}}{\partial Z^\beta} \right\rangle_O \right] + \left\langle K_{\text{gc}}^\alpha \mathcal{G} \frac{\partial \mathcal{G}^{-1}}{\partial Z^\alpha} \right\rangle_O \end{aligned} \quad (9)$$

where $F = F^{(0)}(\tau, \bar{\psi}, p, \xi_0)$ is independent of θ . According to the equation (8) the distribution thus evolves on the collision time scale : $\epsilon_\tau = \epsilon_\nu$.

In the thin-orbit width approximation where $\epsilon_\psi \ll 1$, (8) simplifies as $M_{\text{gc}}^{(0)} = 0$ and $K_{\text{gc}}^{a(0)} = \left\langle K_{\text{gc}}^a \right\rangle_O$.

GC collision operator with isotropic non-uniform field particles

The particle convection and diffusion coefficients for a collision operator with isotropic field particles can be expressed as [1]

$$\begin{aligned} \mathbf{K} &= -\nu \mathbf{p} \\ \mathbb{D} &= D_t \left(\mathbb{I} - \frac{\mathbf{p}\mathbf{p}}{p^2} \right) + D_l \frac{\mathbf{p}\mathbf{p}}{p^2} \end{aligned} \quad (10)$$

where the convection coefficient ν and diffusion coefficients D_{\parallel} and D_{\perp} are function of (p, \mathbf{x}) only such that the transformation to GC coefficients yields [1]

$$\begin{aligned} \nu_\epsilon(\mathbf{Z}) &= \nu(p, \mathbf{X} + \boldsymbol{\rho}_\epsilon) = \nu(p, \mathbf{X}) + \epsilon_{n,T} \boldsymbol{\rho}_\epsilon \cdot \nabla \nu \\ D_{te}(\mathbf{Z}) &= D_t(p, \mathbf{X} + \boldsymbol{\rho}_\epsilon) = D_t(p, \mathbf{X}) + \epsilon_{n,T} \boldsymbol{\rho}_\epsilon \cdot \nabla D_t \\ D_{le}(\mathbf{Z}) &= D_l(p, \mathbf{X} + \boldsymbol{\rho}_\epsilon) = D_l(p, \mathbf{X}) + \epsilon_{n,T} \boldsymbol{\rho}_\epsilon \cdot \nabla D_l \end{aligned} \quad (11)$$

since the particle momentum and GC momentum are identical up to order ϵ_B . We can assume from now on that $\epsilon_B \sim \epsilon_{n,T} \sim \epsilon$.

Orbit-averaged GC collision operator for numerical applications

In the thin-orbit approximation $\epsilon_\psi \ll 1$, the orbit-averaged GC FP operator (8) can be expressed under the following conservative form [2], which is adequate for numerical implementation in a 3-D FP code

$$\langle C_{\text{gc}}[f^{(0)}] \rangle_O = -\frac{1}{\mathcal{J}_O} \frac{\partial}{\partial \bar{\psi}} \left(\mathcal{J}_O \|\nabla \bar{\psi}\|_0 S_L^{\bar{\psi}} \right) - \frac{1}{\mathcal{J}_O} \frac{\partial}{\partial p} \left(\mathcal{J}_O S_L^p \right) + \frac{1}{\mathcal{J}_O p} \frac{\partial}{\partial \xi_0} \left(\mathcal{J}_O \sqrt{1 - \xi_0^2} S_L^{\xi_0} \right) \quad (12)$$

The I^a space fluxes are expressed in terms of OA-GC convection and diffusion coefficients

$$\begin{pmatrix} S_L^{\bar{\psi}} \\ S_L^p \\ S_L^{\xi_0} \end{pmatrix} \equiv \begin{pmatrix} K_L^{\bar{\psi}} \\ K_L^p \\ K_L^{\xi_0} \end{pmatrix} F^{(0)} - \begin{pmatrix} D_L^{\bar{\psi}\bar{\psi}} & D_L^{\bar{\psi}p} & D_L^{\bar{\psi}\xi_0} \\ D_L^{p\bar{\psi}} & D_L^{pp} & D_L^{p\xi_0} \\ D_L^{\xi_0\bar{\psi}} & D_L^{\xi_0p} & D_L^{\xi_0\xi_0} \end{pmatrix} \begin{pmatrix} \|\nabla \bar{\psi}\|_0 \partial/\partial \bar{\psi} \\ \partial/\partial p \\ -p^{-1} \sqrt{1 - \xi_0^2} \partial/\partial \xi_0 \end{pmatrix} F^{(0)} \quad (13)$$

For collisions with non-uniform isotropic field particle distributions, these coefficients are explicitly derived from (4), (5), (9) and (11)

$$\begin{pmatrix} K_L^p \\ D_L^{pp} \end{pmatrix} = \left(1 + \epsilon_\psi \delta\psi^{(0)} \frac{\partial}{\partial \psi} \right) \begin{pmatrix} -\nu p \\ D_l \end{pmatrix} + \mathcal{O}(\epsilon^2, \epsilon_\psi^2, \epsilon \epsilon_\psi) \quad (14)$$

$$\begin{pmatrix} K_L^{\xi_0} \\ D_L^{p\xi_0} \end{pmatrix} = \begin{pmatrix} -\nu p \\ D_l \end{pmatrix} \frac{\sqrt{1 - \xi_0^2}}{2\xi_0} \left(\epsilon_\psi \bar{\delta\psi}^{(0)} + \epsilon \lambda_{\text{gc}}^{(0)} \right) + \mathcal{O}(\epsilon^2, \epsilon_\psi^2, \epsilon \epsilon_\psi) \quad (15)$$

$$\begin{pmatrix} K_L^{\bar{\psi}} \\ D_L^{p\bar{\psi}} \\ D_L^{\xi_0\bar{\psi}} \end{pmatrix} = -\epsilon_\psi \frac{\delta\psi^{(0)}}{p \|\nabla \bar{\psi}\|_0} \begin{pmatrix} -\nu p \\ D_l \\ -\sqrt{1 - \xi_0^2} D_t / \xi_0 \end{pmatrix} + \mathcal{O}(\epsilon^2, \epsilon_\psi^2, \epsilon \epsilon_\psi) \quad (16)$$

$$D_L^{\bar{\psi}\bar{\psi}} = \mathcal{O}(\epsilon^2, \epsilon_\psi^2, \epsilon \epsilon_\psi) \quad (17)$$

$$D_L^{\xi_0\xi_0} = \left[\Delta^\dagger - \epsilon \lambda_{\text{gc}}^{(0)\dagger} + \epsilon_\psi \left(\bar{\delta\psi}^{(0)} \frac{(1 - \xi_0^2)}{\xi_0^2} + \delta\psi^{(0)\dagger} \frac{\partial}{\partial \psi} \right) \right] D_t + \mathcal{O}(\epsilon^2, \epsilon_\psi^2, \epsilon \epsilon_\psi) \quad (18)$$

where $\delta\psi^{(0)}$, $\delta\psi^{(0)\dagger}$, $\bar{\delta\psi}^{(0)}$, $\lambda_{\text{gc}}^{(0)}$, $\lambda_{\text{gc}}^{(0)\dagger}$ and Δ^\dagger are bounce-averaging coefficients to be calculated from particle orbits. Note that to leading order we retrieve the usual collision operator in the zero-orbit width limit.

The implementation of this operator in the 3-D Fokker-Planck code LUKE [3] is under way. It will describe neoclassical transport and thus include the bootstrap current consistently with other sources (radio-frequency, ohmic heating) in general current drive calculations.

References

- [1] A. J. Brizard. A guiding-center fokker-planck collision operator for nonuniform magnetic fields. *Phys. Plasmas*, **11**, 4429 (2004).
- [2] A. J. Brizard, J. Decker, Y. Peysson, and F. X. Duthoit. Orbit-averaged guiding-center Fokker-Planck operator. *Phys. Plasmas*, **16**, 102304 (2009).
- [3] J. Decker and Y. Peysson. DKE: A fast numerical solver for the 3-D drift kinetic equation. Report EUR-CEA-FC-1736, Euratom-CEA, 2004.