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1. Introduction 
In the present communication we propose a relatively simple general technique for modeling 

the propagation of electromagnetic waves in media with complex dielectric response and 

spatial dispersion. The basic problem considered below is reconstruction of electromagnetic 

fields inside and outside a layer of stationary but spatially inhomogeneous plasma highlighted 

by the known incident radiation. This problem primarily corresponds to the plasma heating by 

high frequency waves in magnetic traps. Mathematically such processes are naturally 

described by a boundary problem for Maxwell equations with inhomogeneous constitutive 

relations. However, there is a regular way to transform this problem to a purely evolutional 

problem defined only by initial conditions. In this form the problem becomes more 

convenient both for developing the analytical solutions and for numerical calculations. 

The considered approach is a particular form of the more general method of invariant 

embedding [1]. In most cases the invariant embedding technique has been applied to a scalar 

wave equation. However, wave propagation in anisotropic and gyrotropic media is more 

adequately described by vector wave equations. A specific feature of such media is the 

existence of several normal waves with different polarizations. In this case, a straightforward 

generalization of the standard invariant embedding technique is possible, but it involves 

essential technical difficulties. The main goal of the present communication is the 

demonstration of a new interpretation of the invariant embedding technique. A particular new 

development concerns the interaction between the normal waves of the studied medium in 

terms of the evolution of the reflection operator that couples counterpropagating normal 

waves. This reformulation of the invariant embedding approach gives rise to new 

evolutionary equations that are more transparent, physically intuitive, and very flexible for 

further analytical transformations or numerical studies.  

2. Mode-impedance technique for Maxwell equations 

Let us consider a plane monochromatic wave which is incident to inhomogeneous plasma 

layer, discussing of generalization of this technique to three-dimensional geometry you can 

find in [2]. Parameters of the layer vary along the coordinate z, and the layer is limited within 
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the range bza ≤≤ . Outside the layer there is some “external” medium which is assumed to be 

homogeneous. Therefore the wave field inside and outside the layer may be presented in the 

following form: 
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Here 0E , 00ER
)

 and 00ET
)

 define, correspondingly,  the amplitude and polarization of the 

incident, reflected and transmitted waves outside the slab, the x axis is directed in the incident 

plane along the transverse wave vector. In equation (1) we assume for simplicity that 

dielectric properties of the external medium are identical at the both ends of the slab, thus ω , 

xk  and zk  satisfy the same dispersion relation. Summation symbol in (1) indicates that in 

principle several modes with different zk  may exist in the external medium. Note that the 

polarization vector of reflected and transmitted waves may differ from the those of the 

incident wave due to excitation of several normal waves in anisotropic and gyrotropic media. 

This is taken into account by introduction of the reflection and transmission matrixes, 0R
)

 and 

0T
)

, instead of scalar reflection and transmission coefficients typical of isotropic medium. 

Our final goal is to find the wave distribution )(zE  inside the slab and the reflection 

and transmission matrixes, 0R
)

 and 0T
)

, characterizing the wave distribution outside the slab. 

To do so, one must solve Maxwell equations inside the slab, 
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with proper boundary conditions – fixed incident wave at the one end and absence of the 

ingoing (incident) wave at the other end. Here ck /0 ω=  is the vacuum wave vector, and the 

dielectric response of plasma is defined by 33×  tensor operator 

...),(),(),()( 2
210 +∂+∂+= zxzxx kzkzkzz εεεε ))))  which contains derivatives over the z 

coordinate in case of spatial dispersion. 

Now we are ready to introduce the mode-impedance technique. At first step, one must 

choose the minimum set of field variables that describe a particular problem, and convert 

Maxwell equations to the following form: 

ΨΨ Mz
)

=∂ ,     (2) 

where )(zM
)

 is a matrix of scalar functions of z, it contains no differential operators, and )(zΨ  
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is a vector of some of field components. In most cases, the spatial dispersion increases an 

order of Maxwell equations, thus to preserve the form (2), some derivatives of field 

components must be also included as components of the Ψ -vector, e.g. 

( )...,,,,,,,,, 2
xzzzyzxzzzyyxx EEEEHEHEHE ∂∂∂∂=Ψ , 

Here the derivatives are treated as independent field variables what allows to take into 

account higher dimensionality induced by the spatial dispersion, for example, related to 

appearance of electrostatic waves. Particular cases of reduction of Maxwell equation to form 

(2) will be studied in the next sections. In further analysis we assume that the vector field 

)(zΨ  is continuous; to provide this it is sufficient to require that )(zM
)

 is finite. 

Once Maxwell equation are formulated in the form (2), it may be rewritten as 

equations for two coupled counterpropagating waves 
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Here +E  and −E  describe the waves with definite propagation direction in the external 

medium outside the slab. Thus we reduce Maxwell equations to equations of coupled waves 

(3) which should be solved in the range bza <<  with boundary conditions 

( ) ( ) 0inc == −+ ba E,EE . Fortunately the problem may be further reduced to evolutional 

problem defined only by initial conditions. Let us formally introduce “mode-impedance” 

matrix that couples forward and backward waves as 

.      ( ) ( ) ( )zzRz +− = EE ˆ .     (4) 

Note, that this unknown yet operator may be considered as the reflection matrix of the 

reduced layer ],[ bz  for the wave incident from az < . For example, )(aR
)

 gives the reflection 

matrix for the whole slab ],[ ba , and 0)( =bR
)

 since there is no reflection for waves 

propagating in the homogeneous external medium.  Substituting (4) into equations (3), one 

may exclude +E  and obtain the following matrix equation for the impedance operator: 
+−+− +++=∂− rRttRRrRRz
)))))))))

,    0)( =bR
)

.   (5) 

This is the main result of the paper. In case of one-dimensional inhomogeneity, the 

evolutional equation is reduced to a set of nonlinear ordinary differential equations for 

components of the impedance matrix )(zR
)

, which can be easily integrated numerically for 

arbitrary distribution of the dielectric tensor in space. The integration should start from the 

right boundary bz =  with zero initial condition. Once  )(zR
)

 is known, the wave field 
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distribution inside the slab may be retrieved as well as the reflected and transmitted waves 

outside the slab (for a given incident wave). Indeed, the forward wave )(z+E  may be obtained 

by integrating the following equation from the boundary az = : 
inc)(,)( EEEE =+=∂ ++−++ aRrtz

)))
.    (6) 

The backward wave −E  may be retrieved using equation (8), then the original wave field 

inside the slab is obtained from (4). 

The proposed formalism has been proved to be very effective in the modeling of wave 

propagation both in the one- and multi- dimensionally inhomogeneous magnetized plasmas. 

To provide working examples of application of the proposed technique we consider 

electromagnetic waves propagating in dense magnetized plasmas in electron cyclotron 

resonance frequency range. We focus our attention on a problem of linear coupling of the 

electromagnetic O and X modes in inhomogeneous plasma, excitation of the electrostatic 

electron Bernstein mode by the X mode and cyclotron damping of these waves (more details 

see [2]). 

3. Conclusion 

So, the boundary problem for Maxwell equations is equivalent to two consecutive 

evolutionary problems given by equations (5) and (6) which may be trivially integrated 

numerically. In these equations we automatically avoid exponential growth of uncontrolled 

evanescent modes which may result in instability of numerical integration. However we must 

pay for such simplification since one of the evolutionary equations becomes nonlinear. It 

should be stressed here that the only heuristic action in our technique is formulation of a 

model for the dielectric response (what indeed selects the studied modes) and choice of proper 

components of the vector Ψ . Although the derived analytical expressions proved to be rather 

lengthy for particular problems studied below, the numerical integration of the resulted 

evolutionary equation was very stable even for the most difficult cases involving several very 

different scale-lengths. In summary, by performing all analytical transformations on a 

computer we develop a flexible and fast tool for studying full wave problems in complex 

media.  
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