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Modelling of ion cyclotron heating, ICRH, requires self-consistent calculations of the 

distribution function of the resonant ion species and of the wave field. A Fokker-Planck code has 

been developed suitable for fast routine simulations. The distribution function is obtained by 

solving a pitch angle averaged function with an 1D, time dependent Fokker-Planck code using 

cubic finite elements. The averaged parallel velocity is calculated from the distribution function 

with an analytic formula [1, 2], which is necessary in order to be able to calculate the Doppler 

broadening at the cyclotron resonance and the effect on the wave field near the resonance. The 

wave-field required in the quasi-linear operator is calculated with the LION code [3, 4]. The global 

distribution function is obtained by dividing the plasma volume in a number of shells in which the 

distribution function is calculated. In order to be able to calculate the effect on power partition and 

wave field of a the RF-heated distribution functions response functions are calculated from the 

distribution functions compatible with the wave field representation in the LION code. The Fokker-

Planck code has been implemented in the self-consistent code SELFO-light enabling self-consistent 

calculations of wave field and distribution functions.  

 

FOKKER-PLANCK EQUATION 

The distribution functions of the resonant ion species are calculated by solving an 1D time 

dependent Fokker-Planck equation, ( ) ( )2, 4 ,i iF t f tπ=v v v , on an arbitrary number of shells defined 

by magnetic flux surfaces 
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summed over frequency nω and toroidal mode number spectrum nφ and the Larmor radius 

37th EPS Conference on Plasma Physics P5.156



/i civρ ω= . The quasi-linear operator describing the wave absorption is calculated by averaging the 

wave field and the perpendicular wave number along the flux surfaces with the local absorbed 

power at each harmonic of the cyclotron frequency. The electric field is calculated to be consistent 

with a given antenna spectrum, required as an input to the code. fβ β=∑  is one of 

Chandrasekhar’s collision operators [5] summed over the different background species: ions and 

electrons, regarding other notations see Ref. [5]. The source term Si describes NBI or particles 

arising from thermonuclear reactions.  
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standard cubic FEM basis functions with 2 1( ) 1i iϕ − =v , 2 ( ) 1i iϕ′ =v , 2 2 ( ) 0i iϕ ±′ =v  and 2 2 1( ) 0i iϕ ± − =v , 

where vi is the central value of the cell. The time evolution is obtained by solving the following 

system of linear equation 
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The parameter k changes the scheme continuously from a fully explicit scheme for k = 0 to a fully 

implicit scheme for k = 1.  

The parallel temperature used in LION code, important for the polarisation of the waves near 

the fundamental cyclotron resonance, is obtained from the averaged parallel velocity of the ions 

determined with an heuristic formula [1, 2] from the calculated distribution function 

( )2 2 2
|| eff F dμ= ∫v v v v , where ( )( ) ( ) ( )( )2 2 42 1 2 3 1 2 2eff γ γ γμ = + + +v v v v v v , vγ represents the 

velocity above which pitch angle scattering ceases to be important [6]. The formula was verified 

with the 2D BAFIC code [7].   

  

RESULTS 

The convergence is studied for in absence of RF-power, by measuring the residual collisional 

power transfer from the simulated ions to the background electrons. The convergence of this 

quantities w.r.t the number of grid points in velocity space is shown in Fig. 1. The figure shows 

how the error is proportional to the inverse of the number of grid points. 

The standard scenario of hydrogen minority heating in a deuterium plasma is studied for the 

following parameters: nH = 8×1017m-3 and nD = 3×1019m-3, TH = TD = Te = 5keV, B0 = 3.4T, PRF = 

1.6MW, f = 47MHz and nφ = 22. The equilibrium parameters are chosen to represent a JET 

equilibrium calculated with the CHEASE code [8]. Power is absorbed by fundamental heating of 
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hydrogen and second harmonic heating of deuterium. The cyclotron resonance pass through ρ = 

0.35 on the low field side of the magnetic axis, where ( ) ( )maxV Vρ ψ ψ= , V(ψ) is the volume 

enclosed by the flux surface ψ. Here only the evolution of the hydrogen is calculated. In Fig. 2 the 

time evolution of the collisional power transfer of hydrogen to the background species is shown. In 

Fig. 3 the steady state distribution functions are shown versus energy and ρ for 1.6 MW. Fig. 4 

shows the collisional power transfer profiles to ions and electrons after 1.5s, at which time they 

have reached steady state. 

 

CONCLUSIONS 

A finite element Fokker-Planck code based on cubic elements has been developed and 

implemented into the self-consistent code SELFO-light developed for fast routine calculations of 

the ICRH power deposition profiles. The advantage of the scheme is that it is modular taking any 

distribution function and its derivative given on a velocity grid and a quasi-linear operator 

describing the heating. The basic problem with calculating the distribution functions is the 

attenuation of the distribution function with the velocity, which produces erroneous result at the 

high velocities. By calculating F instead of f and by using a cubic FEM scheme we try to improve 

the solution at high velocities, further optimisation studies is required to make the scheme a robust.  
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Fig. 1 Convergence of residual collisional power 

transfer to electrons in absence of ICRF heating.  
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Fig. 2 Time evolution of power transfer to ions and 

electrons for 1.6 MW. 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Distribution functions versus velocity and minor 

radis, r, in the outer midplane. 
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Fig. 4 Absorbed RF power (blue), collisional power 

transfer to ions and electrons, for a single toroidal mode 

nφ =22. 
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