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Following a recent Alcator C-Mod experiment on ICRF mode conversion flow drive [1, 2, 3],
we have carried out a similar experiment in JET D(*He) plasmas (Fig. 1): By =3.45 Tat Ry =
2.97m, I, =2.8 and 1.8 MA, central density neo~ 3x10" m™ during flat top, and in L-mode
confinement. The plasma current was in the same direction as the toroidal B field. All the
plasmas were in D majority with external ®He puffing. The *He concentration X[*He] =
Nuea/Ne, Was feedback controlled in real-time (Fig. 1-(c)), and scanned pulse by pulse. X[*He]
was estimated from visible spectroscopy light in the divertor, linking relative light intensities
to relative concentrations. The ICRF power was at 33 MHz from the A2 antennas. At By =
3.45 T, the ®He ion cyclotron resonance layer was about 20 cm to the low field side of the
magnetic axis. For X[*He] ~ 13%, the D-*He hybrid layer was about 10 cm to the high-field-
side of the magnetic axis. The ICRF antennas were at -90° phasing, i.e., the launched fast
waves were toroidally asymmetric predominantly in the counter-I, direction. The toroidal
angular velocity o, of C** is measured by the core CXRS system during beam blips. As
shown in Fig. 1-(e), for pulse 78845, counter-I, rotation (w4 < 0) was observed during all the
blips for t < 11 sec, and the rotation only became co-I, later in the pulse with continuous
neutral beam injection. A scintillator probe measured the energy and pitch angle of lost fast
ions [4]. As shown in Fig. 1-(h), the detection of 3.7 MeV a-particles, born from the nuclear

reaction between D and *He, indicates a hot *He ion population near the plasma centre.

*See Appendix of F.R. Romanelli et al., Fusion Energy Conference 2008 (Proc. 22" Int. Conf. Geneva
2008), IAEA Vienna (2008)
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FIG. 1 Data traces for JET pulse 78845. Rotation in the  rotation (R =3.04 m) is plotted vs.
counter- I, direction (e, < 0) shown in panel (g). 3
X[*He]. On Alcator C-Mod, the flow
drive is also sensitive to X[°He], largest
flow drive at X[*He] ~ 10-12%, but the driven flow is in the co-l, direction [3].

JET:3.45T, 33 MHz, 2.8 MA, In Fig. 3-(a), we show the central rotation from all
6 1.6-3 MW, -?0 phasing .
Rotation t R = 3.04 m the beam blips in this experiment vs. RF power

level. There is no Pge dependence for X[°He] < 5%,
] but for X[°He] ~ 6%-18%, we have larger counter-I,

rotation at higher RF power. The rotation change at
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FIG. 2 Central rotation vs. X[*He]. directional fast waves in the ICRF minority heating
scenario [7]. A pulse at 1.8 MA indicates a larger
counter-I, rotation. Note my ~ -10 krad/s corresponds to thermal Mach number My, (0) ~ -0.07
and Alfven Mach number Mx (0) ~ -0.003. The approximately linear RF power dependence is
similar to the result from Alcator C-Mod as shown in Fig. 3-(b), which also shows an I,

dependence (details discussed in Ref. [3]).
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deposited on electrons via mode converted waves, and wave->He ion interaction is weak. In
the intermediary regime where we observed large flow drive effect on both JET and Alcator
C-Mod, the launched fast waves from the antenna undergo mode conversion, and the resulted
MC ion cyclotron waves interact with both electrons and the *He ions. The 2-D power
deposition contours from TORIC simulation [8] are shown in Fig. 4 (a) for JET and 4-(b) for
Alcator C-Mod, with the wave branches labelled. This mode conversion scenario and
interaction between the MC waves with the *He ions and electrons and associated transport
may be key for flow drive, but the detailed physical mechanism is not yet understood.

The trend in the wave particle interactions vs. X[*He] is also confirmed by the scintillator
probe (SP) measurement of fast a-particle (3.7 MeV) losses and gamma-ray spectrometry. For
X[*He] < 0.5%, SP shows a large amount of fast a-particle loss, suggesting high energy He
ions created by the fast wave minority heating on the IC resonance with effective temperature
~ 200 keV. For X[°He] ~ 13%, the fast o-particle loss becomes much smaller but is still
significant. Together with gamma-ray observations and the temperature dependence of the D-
®He reaction rate, the result indicates a population of hot *He ions (effective temperature ~ 20-
40 keV) near the plasma centre, created by the interaction between the MC ICW and He ions.
In our experiment, the pulses with larger counter-1, rotation have less *He ion loss than those
in the minority heating regime, where no flow drive effect is observed. As a result, we can

reasonably exclude the contribution of fast ion losses to the observed counter-I, rotation.
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