37" EPS Conference on Plasma Physics P5.318

Laser-induced plasma and glass type effects on the process

of micro-channel fabrication using CO, Laser
A. Ben Azouz ', T. Piasecki' ,D. Brabazon?, M. Vazquez', M. Macka® and B. Paull*
" Mechanical Eng School, Dublin City University, Dublin 9, Ireland, aymen.benazouz2@mail.dcu.ie
! Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University

2 School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland

1 INTRODUCTION

Laser energy absorption of materials depends highly on the wavelength. Glass materials
absorb strongly at or near 10 um making the CO, laser very efficient for machining these
materials [1, 2]. The fabrication of micro-channels on the surface of transparent materials can be
used for various applications in telecommunication, energy or biomedical engineering [3].

The surface breakdown mechanisms of laser ablation are dependent on many characteristics of
both the laser and the material. In the infrared spectral region, the light absorption by glasses is
increased due to the oscillating modes of the glass structure. The energy of the light heats,
softens, melts and eventually evaporates the surface [4]. Plasma is formed at the target’s surface
and temperature can exceed 10* K during the ablation [5].

In previous work pulse energy and scanning speed were considered as the main factors
affecting the process [6]. Relatively few studies have been conducted using industrial CO, lasers
to experimentally relate the process control parameters to the resulting micro-channels'
characteristics. A systematic and well designed study of the process is possible by experimental
methods that give real measurements of responses and allow a mathematical model to be

developed, which can then be used as a channel manufacturing guide [7].

2 EXPERIMENTAL SETUP

2.1 Topology characterisation

Glass samples of 20 mm by 40 mm and 2 mm thick of soda lime, borosilicate, quartz and
fused silica were used in this study. Channels 17 mm in length were fabricated on the surface of
the samples using a 1.5 kW pulsed mode CO;, laser. The laser beam was focused co-incident with
an air jet at 1 bar parallel onto the sample surface with a 90 um spot size for channel processing.

The results of previous design of experiment models were used to set the range of the laser



37" EPS Conference on Plasma Physics P5.318

parameters [6]. From transverse sections of the samples, width and depth of the channels, were
measured using an optical microscope (Beuhler Omnimet Enterprise).

2.2 Design of experiments

The experiments were designed based on a three level [\/ariables 1 o [+

Box—Behnken design with full replication [8]. Laser power P, | P [W] 9 |12 |15
PRF [HZz] 160 | 194 | 228

pulse repetition frequency PRF and scanning speed U, were 7 [mm/min] | 300 | 400 | 500

set as the laser independent input variables. Response Surface  Taple 1: Experiment input variables
Methodology was applied to the experimental data using statistical software, Design-Expert V8,
for statistical analysis. First and second order polynomials were fitted to the data to obtain the
regression equations. A step-wise regression method was used to fit a second order polynomial
equation to the data and to identify the relevant model terms [7, 9]. The same processing
parameters were applied to soda lime, borosilicate, quartz and fused silica glass samples [10].

2.3 Optical transmission measurement

Optical transmission properties were measured by illuminating channels with light from a
tungsten halogen calibrated light source, Ocean Optics LS-1-CAL. Transmitted light was
collected by a 100 pum optical fibre and measured using Ocean Optics MayaPRO 2000

spectrometer. Sample channels from each glass type were used to measure the transmittance.

3 RESULTS AND DISCUSSION

3.1 Statistical analysis of the channel topology results

The step-wise regression method with two factors interaction (2FI1) modelling method was
used to develop mathematical model of the channel dimensions [8]. Equations 1 and 2 describe
the process model mathematically within the investigated ranges of parameters that were
generated from the above results for the channel width and depth in quartz, respectively.

Width = 274.23-8.22x P +1.58 x PRF—1.26 x U +0.06 x P x PRF —5.95x10° x PRF* +1.56 107 xU? o))

Depth=524.30+141.88x P —5.94x PRF—2.32x U -0.15x P x PRF —0.08x P xU —1.63x P? +0.02x PRF ? (2)
3.2 Channel topology

The results of the response surface methodology applied to soda lime, borosilicate and fused-
silica glasses showed:

1. The mathematical models adequately described the responses within the limits of the factors

investigated.
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2. Quartz and fused silica samples had the smallest and most predictable channel size.

3. P had the largest effect on the channel size, width and depth, for the four types of glasses.

4. Channel widths decreased slightly with increased PRF or U.

5. Channel depths decreased significantly with increased PRF or U.

6. Channels made on soda lime and borosilicate presented a heat affected region where material
melted but did not evaporate, (Fig. 1 c, d). This was attributed to the differences in thermal
expansion coefficients, summarised in Table 2, for which lower values would result in a

shorter distance over which the shockwave would travel in these substrates.

Table 2 Thermal expansion coefficients for the four glass types [11]
Quiartz | Fused silica | Borosilicate | Soda lime
Coefficient thermal expansion [um/m °C] | 0.7 0.54 4.00 9.50
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Fig. 1: Transverse images of the ablated channels in (a) quartz, (b) fused silica, (c) borosilicate, (d) soda lime.

3.3 Transmission experiments

Fig. 2 shows the results of transmittance through fabricated channel compared to non-
processed glass substrate in the range of 380 to 1050 nm. Borosilicate samples transmittance
dropped to 9%, fused silica and quartz to 5.5% and soda lime to almost 0%. The triangular shape
of all channels (with slopes of ~26°) promotes the divergence of incident lights from collecting
fibre. Many channels, especially in fused silica and quartz, presented dark patches created by
adhering burnt material to the glass surface [12]. Application of argon during laser processing

should help eliminate this cause of reduction in transmittance values.

4 CONCLUSION

The developed mathematical models fitted well to the experimental data within the
investigated range of parameters allowing widths and depths of processed channels to be
predicted. Quartz and fused-silica samples presented more uniform channel topologies. Their

lower thermal expansion coefficients limited deformation and formation of cracks during laser
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processing in these materials. The light transmission measurements showed that the topology of
channels resulting from the laser processing conditions had a great effect on the transmittance
capabilities of processed channels. The possibilities of creating rectangular or circular shape
channels will be investigated which should improve the transmittance of the channels.
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Fig. 2: Optical transmission results from glass micro-channel
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