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Introduction. The most relevant characteristic of a complex plasma is the dust charge as well
as the dust charging process itself which controls different collective and individual behaviors
of the plasma. The dust charging has been exhaustively studied providing several theoretical
approaches that have improved the early Orbital Motion Limited (OML) description [1, 2]. The
OML is considered as a suitable model and, at least, it provides a certain perspective of the
main plasma parameters involved in the charging processes. Recent works have stressed the im-
portance of the electron and ion velocity distribution functions in addressing the description of
plasma stability analysis under the frame of plasma fluid description, including dust charge fluc-
tuations. The consideration of non-Maxwellian distribution functions has been proved to induce
plasma departures from the usual Maxwellian equilibrium, specially under the development of
intense electric fields that can accelerate charges till superthermal velocities [3]. In these cases,
the distribution function tails fit well to a power-law dependence even for electrons. In this com-
munication, we devote attention to the effect of non Maxwellian electron distribution functions
on the collective plasma behavior through a linear analysis of perturbed fluid equations. The
stability of a partially ionized complex plasma with a non Maxwellian electron population is
studied by including this feature on the dust charge fluctuation for infinite and finite dust grain

mass.

Non-Maxwellian distributions in fluid and charging equations. We study a dusty plasma
that could be described by its species distribution functions f;(v,r), (j = e,i,d,n) each one
governed by a kinetic Vlasov-Boltzmann like equation with source-sink contributions. The evo-
lution equation of electron and ion distribution functions df/dt, i.e. the Vlasov term, should
have a sink term in form —cq [ o.(r,Vv')V f(r,v',t) f;(r,v—v')dv' accounting to the losses of
charging particles due to the impact onto the dust grains having distribution f;. This simple
collisional-like term assumes total (or partial) absorption of charges by the grain with relative
velocity v — V' proportional to the number of encounters in phase space. The effective cross

section o, can be taken from any charging model, as for instance, the OML approximation.
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Therefore, the dust charging contributes to the plasma species 0

fluid equations gives rise some terms proportional to both, the

charging currents /; and the dust density n,. This contribution s

Im(w)/w

should be properly stated before carrying out a stability anal-
ysis. For the charging process we consider Maxwellian ions y

but non-Maxwellian electron distribution f, which would sat- #

isfy the unperturbed steady state Vlasov equation. Hence, we o

would have f,(v) = foo(\/|V? —2e¢ /m,]|) if a plasma potential
perturbation ¢ is considered. As a simple application, we have
used the so-called kappa-distribution function [3] f.0 = n.0Nk
[14+ (mev? /Tyo)- (26 —3)] 7! (x> 3/2 and Ny is the normal- .

ization constant) which tends to the Maxwellian distribution for :HJ

infinite k. From this function, the electron density and average v " % v W W

Im(w)/w ;

kinetic energy profiles can be obtained, giving

ne=ne &/ To=Ta & . with & =1-2e¢/T,o(2k—3). (1)

The dust charge currents /; due to electrons and ions can be obtained by applying, for instance, the usual
theoretical OML charging model which states the dependence on the dust charge fluctuation and dust
density on the electron and ion fluid equations. So that, for the OML effective charging cross section
o, for grains of radius a, using the unperturbed function fjo of species j, the charging current can be

expressed as

Ij=gq; 7Iaz/oo v(l-2 4; Pd ) fio(v) 4mv? dv (2)

2
mj €j m;v

where @, =~ g4/a is the surface grain potential with respect to the plasma and &; = (sign(q;@qs) +1)/2
and v2, 7 =2|9aqi|/m;. Considering the charge conservation equation for an isolated plasma d (en; —en, +
qang)/dt+ V- (enju; — en.u, + ggngu,) = 0 for a fluctuating dust charge g, = —eZ, (g, = 1, =0) the

dust charging equation is

0qq/0t +uy-Vay =1, +1; = [—en, Vi, {(T,,Z) +en; Vi, &(T;,2)] ma?, (3)
where the dimensionless functions
) W]?n . R
Ci(T;,2) = / w(l — =) fi(w)dmdw 4)
€Wmj w

have been defined in terms of the dimensionless distribution f;(w) = Vﬁj fio(Vrw)/njo, where w; =
Vmj/Vr;, for species j with thermal velocity V7, = \/W From these expressions, and because the
dependence on Iing (I.ng) on the fluid equations sink terms, it is convenient to define a characteristic
charging frequency ;, due to n; fluctuation, as ew;/n; = dI;/dn; which allows us to write dl,/dn, =
—ew;n;/(n, ng) (computed at equilibrium) which, together with the two charging frequencies v,; =
—d1;/dq; (j = e,i), the effects of the charging currents and dust charge fluctuations in the coupled
perturbed equations can be included by means of these three frequencies with o1; + 81, = Iy (dn;/n;

—0n,/ne)— (Ve + Vi) 044-
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The model. We are now in position to establish the fluid model equation for the stability analysis of a
partially ionized complex plasma accounting with the dust charging. Hence, for single charged positive

ions, we have the ions continuity equation
I; ny
Eni-l-v-(nilli):— le + Vi ne— Vv n )

where we have included a source of ions for ionization proportional to the electron density 7., although

the frequency v; can also be a function of n, [4]. The sink term with frequency v; accounts itself with
the ion losses due to several mechanisms as recombination. The remaining sink comes from the dust
charging and it explicitly depends upon dust and ion densities, the latter is included on /;. The time evo-
lution equation for the ion momentum density n;u;, taking into account the frequencies v;; for collisions

between species i and j and the previous discussion on kinetic descriptions, reads :

a A
i —|—V~(n,~ui uH—IP’/mi):—eV(])/mi—Iindud/e—ninij(ui—uj) (6)
J

ot

where j is referred to electrons, dust grains and neutrals. The only relevant collision frequency consid-
ered here is v; = v;, due to the interaction of ions with cold neutrals at rest. Although similar equations
hold for the electrons, in this contribution we assume the electron population to satisfy the relations
ne(¢) and for T,(¢) directly derived from the non-Maxwellian distribution (1) that should replace the
usual Maxwellian representation. So that, n, can be approximated by a linear function of the perturba-

tion plasma potential 6 ¢ as

Ne = /fedv R /(feo — @ 1§feo ) 4mv? dv giving On, ~ —neoe6¢ 47r/feodv @)
v v

ne ne

For the kappa distribution, these relations can be obtained by Taylor expansion of (1) up to first order
in ¢ = 09, giving n, —n, = dn, = ned¢ (2xk —1)/(2x — 3)T,0 which, if compared with the usual
Maxwellian relation n.0ed¢/T,, we find that an effective electron temperature can be defined as 7, =
(2K —3)T,0/(2x — 1) < T,. Disregarding ion-electron and dust-electron collisions and neglecting also
the electron inertia, the electron equations become decoupled from the rest, entering into the analysis
through on,.. Due to the fact that many collective effects involve grains oscillations, it is noteworthy
to deal with dust and momentum density fluctuations in the linear stability analysis. For simplicity, we
assume for this work the grains to satisfy a continuity equation with no source-sink terms, whereas for the
momentum density, further considerations are stated in the following. First, let us stress that, by the same
reasoning leading to (3), an equivalent relation holds for the dust mass m, variation as dmy /dt+ ;- Vi,
= (me|L,| + m;l;) /e meaning that the grain mass still increases although the charging equilibrium 7, +
I; = 0 is reached. Therefore, we write the momentum density equation as my d(nguy)/dt) = —qngVe
—mgVgug = —qangV ¢, where we have neglected the dust pressure term P and the collision frequencies
between grains and the other lighter species. The linearized equations for finite mass oscillating grains,

with constant charge sign, are

a6 ddou
Tnd +n40V-8uy; =0 and my I’ldoitd +gao ngo Voo =0 3)

The set of equations is closed by using the Poisson equation for the plasma potential V>¢ = 4re (n,

+Zng —n;).
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Discussion and conclusions. Finally, dropping the zero subscript for noting equilibrium values,
with the dimensionless parameters 8 and t derived form n; = (1+ 6)n,, T; = ©T, the grain mass-to-
charge ratio y; = m,/Zm; and with the plasma ion and dust frequencies related by ¥ (05 = wﬁiﬁ /(1+96),

the linear equations can be cast into a matrix form as

5 K 1+6 .
—io+V,+w; ikn,(1+9) Vgi Ne— —n.| ViT+ —2LVT2,a),~ ] n
) Z 0 Ya !
Vi w; 1 i
ik—T1 i+ V; 0 ikV2[1+i—— ] i
n.(1+9) : O Yy _ —0 (9

W, Z . VA 5 |

—= 0 —i0+ Vye + Vyi —wt(1+68)% Z

ne O ) 1) 5
6 » Vi, O 5<
—1 0 ne- ne [T+k w,fi(1+5)( _F)] ¢T,~

from which the wave dispersion relation can be extracted, after linearizing and Fourier transforming the

—io t+k x

perturbations X to X by the phasor e

0 - In agreement with previous works [5] for massive grains (1/y; = 0) an

instability emerges (in the 1/ @), time scale) in one of the three modes be-

Pi

s cause of the non zero ionization which has to satisfy v; = (14 8)(v; + ;)

Im(w)/w i

because of the initial equilibrium condition. However for v; > V .+ v

~+m; we find a quite different branches disposal, since the unstable-stable

mode disappears and a new stable-stable one emerges, as shown in the

previous figures. For finite m; (y; < o) two new branches come out, giv-

ing rise to a bifurcation at the origin (Im(®) = 0, k = 0). This remarkable

* I,

behavior does not allow to cross the @ = 0 axis with continuity, as in the

1072

previous case (see the last figure frames). The unstable mode length for

low k is governed not only for v; but also by v, with no significant

change for different tested electron distributions, although v, is slightly
greater for Maxwellian electrons. For large k there are always two (or
three) stable modes corresponding to the asymptotic values v; and V. + V,; for Im(®). Thus, there is

always an instability due to charging that would only disappear for zero @; and Vv;.
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