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Abstract

The basic Tonks-Langmuir (TL) model [Tonks & Langmuir, Phys. Rev. 34, 876 (1929)] rep-

resents a quasi neutral collisionlees symmetric discharge with a cold ion source. In [Riemann

et al. Plasma Phys. Control. Fusion 47, 1949 (2005)], a fluid treatment involving the cold-ion

approximation was given. This approximation is intrinsically questionable because the ions

themselves are not cold but rather have a nonzero effective temperature even if the ion source is

cold. Here it is shown that the correct results are obtained if the fluid equations are closed with

the appropriate polytropic-coefficient function.

1. Introduction

Tonks and Langmuir [1] gave one of the most basic bounded-plasma models, i.e., a quasi

neutral collisionless symmetric discharge with a cold ion source. The kinetic solution of this

TL model was found by Harrison and Thompson [2]. Riemann et al. [3] gave an approximate(
T i = 0

)
fluid treatment of this model, including the matching of the plasma solution with

the sheath solution. In [4] this matching was performed using a correct kinetic description. In

a related development, Kuhn et al. [5] and Jelić et al. [6] convincingly showed that the ion

polytropic coefficient γ i, which is crucial to the closure of the system of fluid equations via its

definition equation
d pi

dz
= γ

ikBT i dni

dz
= γ

i pi

ni
dni

dz
, (1)

is not a constant and the usual simple assumption γ i = const. can lead to grossly erroneous

results especially near the plasma-sheath boundary.

In this work we make use of the kinetic results of [4] to calculate the correct Φ dependence of

the ion polytropic coefficient and on this basis formulate the exact ion fluid equations. Solving

this system together with the quasi neutrality condition
(
ni = ne), yields the correct spatial

profiles of Φ, ni, ui (the ion fluid velocity), pi, T i ≡ pi/
(
nik
)
, and γ i, which turn out to visibly

differ from the ones obtained with the T i = 0 approximation.
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2. Model and basic equations

Figure 1: Potential profile of the

TL model considered

A time-independent, one-dimensional collisionless Tonks-

Langmuir (TL) model is considered with the walls at z = ±L

(Fig. 1). The walls are assumed to be non-emissive and perfectly

absorbing. There is only one species of ions, which are generated

by electron impact ionization of a cold neutral-gas background.

The electrons are assumed to be Boltzmann distributed.

Using the normalized variables of [4] we write the normalized

ion kinetic equation as

∂ f i (ϕ,y)
∂ϕ

+
∂ f i (ϕ,y)

∂y
=

σ√
2

dx
dϕ

δ (y) , (2)

where f i is the normalized ion velocity distribution function (VDF), x, ϕ and y are the normal-

ized position, potential and velocity variables, respectively, and σ is the normalized ionization

frequency. The basic ion fluid equations read

ion continuity equation (CE)

ui dni

dx
+ni dui

dx
= e−ϕ , (3)

ion momentum equation (ME)

ui dui

dx
+

1
ni

d pi

dx
=

dϕ

dx
− ui

ni e
−ϕ , (4)

Poisson’s equation (PE)

ε
2 d2ϕ

dx2 = ni− e−ϕ , (5)

and Boltzmann distribution for electrons

ne = e−ϕ , (6)

where ni, ui, pi are the ion density, fluid velocity and pressure, respectively and ε = λD/l is the

smallness parameter, with λD the Debye length and l the ionization length.

3. Cold-ion approximation of [3]

In the cold-ion approximation, the ME simplifies to

ui dui

dx
− dϕ

dx
=−ui

ni e
−ϕ , (7)

while the rest of the basic fluid equations remain the same. In the quasi neutral region, the basic

fluid equations (with (7) replacing (4)) can be solved analytically, with the results

xs =
π

2
−1, ϕs = ln2, ui

s = 1, ni
s =

1
2
, (8)

where the subscript s denotes the values at the sheath edge.
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4. Kinetic TL model of [4]

The solution of the ion kinetic equation (2) in the quasi neutral region is given by

f i (ϕ,y) =
2
π

d
dη

FD (
√

η)H (η)H (ϕ−η) , (9)

where FD is the Dawson’s function

FD (x) = e−x2
x∫
0

dte−t2
, (10)

H is the Heaviside function and

η = ϕ− y. (11)

The fluid quantities can be calculated from the quasi neutral ion VDF (9). Figure 2 shows the

variation of γ i with ϕ and the comparison of the fluid quantities of [3] and [4]. SE[05] represents

the sheath potential of [3] and SE[06] represents the sheath potential of [4]. We see that γ i is not a

constant but varies spatially and even becomes negative. Therefore, we conclude that the usual

constant values assumed for γ i are wrong and can give rise to significant errors, especially near

the sheath edge. Comparing the fluid quantities, we see that ni is the same in both cases, (namely

the quasi neutral ion density e−ϕ ), while the ion fluid velocity ui for [3] is different from that of

[4], which discrepancy is due to the cold-ion approximation. Note that to compare the results of

cold-ion approximation of [3] with the kinetic results of [4], the basic fluid equations ((3),(5),(6)

and (7)) have been solved in terms of ϕ .

(a) The ion polytropic coefficient (b) Comparison of the fluid quantities of [3] and [4]

Figure 2: (a) Ion polytropic coefficient as a function of ϕ and (b) comparison of the fluid quantities of [3] and

[4].
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5. Correct fluid treatment of the TL model

Figure 3: Comparison of the ion fluid velocity calcu-

lated from the quasi neutral ion VDF (9) with that calcu-

lated from the basic fluid equations with T i 6= 0.

We now use the ion pressure gradient cal-

culated from the results of [4] and with

it solve the basic fluid equations. Figure 3

shows the comparison of the ion fluid veloc-

ity calculated from the quasi neutral ion VDF

(9) with the one calculated from the basic

fluid equations with T i 6= 0. We see that now

there is no difference in the ion fluid velocity.

Hence, we have shown that solving the fluid

equations with the correct d pi/dz (equivalent

to the correct γ i (z)) yields the same solu-

tion as the kinetic solution, while the cold-ion

fluid solution (corresponding to pi = 0) yields wrong results. This is because the ion themselves

are not cold, but rather have a non-zero temperature, even if the ion source is cold.
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