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Abstract

A new method is proposed for calculating the potential distribution Φ(z) in a one-dimensional

quasi neutral bounded plasma. The potential is required to satisfy a plasma equation of the form

ni {Φ} = ne (Φ), with ne (Φ) given and ni {Φ} expressed in terms of trajectory integrals of the

ion kinetic equation. The present method is characterized by expanding the inverse profile z(Φ)

in a power series in
√

Φ. As a first application, the potential distribution for a collisionless

Tonks-Langmuir discharge with a cold ion source is calculated and compared with the results

of [K.-U. Riemann, Phys. Plasmas 13, 063508 (2006)].

1. Introduction

The plasma-wall transition is one of the most important and most studied problems in plasma

physics. One of the most basic bounded-plasma models, a quasi neutral collisionless symmetric

discharge with Boltzmann-distributed electrons and a cold ion source provided by electron-

impact ionization of cold neutrals, was given by Tonks and Langmuir (TL) [1]. The analytical

kinetic solution of this basic TL model was found by Harrison and Thompson [2]. Kamran and

Kuhn [4] showed that near the center of the basic TL model [1] the fluid quantities should be

Taylor-expanded in
√

Φ rather than in Φ.

Here we propose a new method for calculating the potential distribution Φ(z) in a one-

dimensional quasi-neutral bounded plasma (an example of which is the quasi-neutral TL model

[1]). The potential is required to satisfy the quasi-neutrality condition ("plasma equation"). The

present method is characterized by expanding the inverse profile z(Φ) (with the underline denot-

ing functions of Φ) in a power series in
√

Φ. As a first application, the potential distribution for

a collisionless TL discharge with a general electron distribution and the related cold ion source

is calculated and compared, for the special case of Boltzmann-distributed electrons, with the

results of [3]. It is shown that in the present formulation the problem at hand can be solved with

relative ease in the whole quasi neutral region.
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2. Model and basic equations

We consider the Tonks-Langmuir (TL) model described in [4] and rewrite the plasma equa-

tion (Eq. (11) of [4]) in terms of ϕ as

ni ≡ 1√
2

ϕ∫

0

dϕ̂t
ne (ϕ̂t)√

ϕ− ϕ̂t

dx̂t
dϕ̂t

= ne (
√

ϕ) , (1)

where ϕ is the normalized electrostatic potential. We will now solve this plasma equation in an

analytic-numerical manner in the interval ϕ1 ≤ ϕ ≤ ϕ2, with ϕ1 = 0 and ϕ2 chosen "sufficiently

large", cf. below. We expand x , ni and ne in power series in s :=
√

ϕ−ϕ1 =
√ϕ as

x(ϕ)→ x(s) =
∞

∑
ν=0

ανsν '
Mα

∑
ν=0

ανsν , (2)

with α0 = 0 and

αν :=
1
ν!

[
dνx(s)

dsν

]

s→0
(ν ≥ 1) , (3)

ni (s) =
∞

∑
µ=0

β i
µsµ '

Mi

∑
µ=0

β i
µsµ , (4)

and

ne (s) =
∞

∑
µ=0

β e
µsµ '

Me

∑
µ=0

β e
µsµ , (5)

where the coefficients

β e
µ :=

1
µ!

[
dµne (s)

dsµ

]

s→0
(6)

are assumed to be given and the β i
µ ’s are to be determined from the plasma equation. For

the exact solution of the plasma equation, the upper summation indices Mα , Mi and Me are

all infinite, but for our analytic-numerical approximate solution they will have to be assigned

appropriate finite values.

By inserting (4) and (5) into the plasma equation (Eq. (1)) we obtain

Mi

∑
µ=0

β e
µ sµ =

Me

∑
µ=0

β e
µ sµ (7)

and comparing the coefficients for each µ we obtain

β i
µ = β e

µ

(
µ = 0,1, ...,Mie) , (8)

from which the β i
µ ’s can be determined and which implies that Mi = Me =: Mie.
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M xs ϕs

1 0.9003 1.000

5 0.5750 0.8729

8 0.5722 0.8546

10 0.5721 0.8540

Table 1: Position of the sheath edge and the sheath potential for different values of M

3. Calculating the coefficients αν

The ion density can be calculated as

ni (ϕ)→ ni (s)' 1√
2

Mie

∑
µ=0

γµ

s∫

0

dŝt ŝµ
t√

s2− ŝ2
t
=

Mie

∑
µ=0

γµ√
2

sµ
1∫

0

dτ τµ
√

1− τ2

=
Mie

∑
µ=0

γµ Iµ
√

2
sµ =

Mie

∑
µ=0

[
Mα

∑
ν=0

Be
µναν

]
sµ =

Mie−1

∑
µ=0

[
Mα

∑
ν=1

Be
µναν

]
sµ ,

(9)

with

γµ :=
Mα

∑
ν=0

β e∗
µναν , β e∗

µν := νβ e
µ+1−νH (ν−1)H (µ +1−ν) ,

τ :=
ŝt

s
, Iµ :=

1∫

0

dτ τµ
√

1− τ2
, Be

µν :=
β e∗

µν Iµ
√

2
.

(10)

Comparing (9) with (4) we see that β i
µ =

Mα

∑
ν=1

Be
µναν , so that Eqs. (8) read

Mα

∑
ν=1

Be
µναν = β e

µ

(
µ = 0,1, ...,Mie−1

)
. (11)

The expansion coefficients in Eqs. (2) and (5) can be written as coefficient vectors~α =(α0,α1, ...,αMα )

and ~β
e
=
(

β e
0
,β e

1
, ...,β e

Mie

)
, respectively. The αν ’s can then be calculated economically by

solving Eqs. (11) in the matrix form
←→
C ~α = ~β

e
, (12)

where
←→
C is a M×M dimensional coefficient matrix, with Mie = Mα =: M. According to (11),

the matrix equation (12) has the form




Be
01 Be

02 · · · Be
0M

Be
11 Be

11 · · · Be
11

...
... . . . ...

Be
M−1,1 Be

M−1,2 · · · Be
M−1,M



·




α1

α2
...

αM




=




β e
0

β e
1

...

β e
M−1



. (13)
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Figure 1: Comparison of the inverse profile x(ϕ) calculated with our expansions (2)–(6) with that of Ref. [3].

Figure 1 shows the comparison of the inverse potential profile calculated with our expansions

(2)–(6) with that of [3], for the special case of Boltzmann-distributed electrons. The stars denote

the maxima of the respective curves, i.e., the sheath-edge singularity (except for M = 1, where

the "maximum" is actually a supremum). Note that for the x(ϕ) profile from [3] we have xs =

0.5721 and ϕs = 0.8540. The values of xs and ϕs for different values of M are given in Table

1, from which we may conclude that for M ≥ 5 our expansion yields reasonable to excellent

results.
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