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Abstract

A new method is proposed for calculating the potential distribution ® (z) in a one-dimensional
quasi neutral bounded plasma. The potential is required to satisfy a plasma equation of the form
n'{®} = n¢(®), with n® (P) given and n’ {®} expressed in terms of trajectory integrals of the
ion kinetic equation. The present method is characterized by expanding the inverse profile z (P)
in a power series in v/®. As a first application, the potential distribution for a collisionless
Tonks-Langmuir discharge with a cold ion source is calculated and compared with the results

of [K.-U. Riemann, Phys. Plasmas 13, 063508 (2006)].

1. Introduction

The plasma-wall transition is one of the most important and most studied problems in plasma
physics. One of the most basic bounded-plasma models, a quasi neutral collisionless symmetric
discharge with Boltzmann-distributed electrons and a cold ion source provided by electron-
impact ionization of cold neutrals, was given by Tonks and Langmuir (TL) [1]. The analytical
kinetic solution of this basic TL model was found by Harrison and Thompson [2]. Kamran and
Kuhn [4] showed that near the center of the basic TL model [1] the fluid quantities should be
Taylor-expanded in v/® rather than in ®.

Here we propose a new method for calculating the potential distribution ®(z) in a one-
dimensional quasi-neutral bounded plasma (an example of which is the quasi-neutral TL model
[1]). The potential is required to satisfy the quasi-neutrality condition ("plasma equation"). The
present method is characterized by expanding the inverse profile z (®) (with the underline denot-
ing functions of ®) in a power series in v/®. As a first application, the potential distribution for
a collisionless TL discharge with a general electron distribution and the related cold ion source
is calculated and compared, for the special case of Boltzmann-distributed electrons, with the
results of [3]. It is shown that in the present formulation the problem at hand can be solved with

relative ease in the whole quasi neutral region.
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2. Model and basic equations
We consider the Tonks-Langmuir (TL) model described in [4] and rewrite the plasma equa-

tion (Eq. (11) of [4]) in terms of ¢ as
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where ¢ is the normalized electrostatic potential. We will now solve this plasma equation in an
analytic-numerical manner in the interval @; < ¢ < @, with ¢; = 0 and ¢, chosen "sufficiently

large", cf. below. We expand x , n’ and n° in power series in s := /@ — @] = VO as
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are assumed to be given and the EL ’s are to be determined from the plasma equation. For
the exact solution of the plasma equation, the upper summation indices M*, M’ and M¢ are
all infinite, but for our analytic-numerical approximate solution they will have to be assigned
appropriate finite values.

By inserting (4) and (5) into the plasma equation (Eq. (1)) we obtain

M M¢
Y Bist =) Bis" @)
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and comparing the coefficients for each y we obtain

(L=0,1,...M*), ®)

from which the ’“ ’s can be determined and which implies that M = M¢ =: M.
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M -Es (Ps
I |{0.9003 | 1.000
5 10.5750 | 0.8729
8 [0.5722 | 0.8546
10 | 0.5721 | 0.8540
Table 1: Position of the sheath edge and the sheath potential for different values of M
3. Calculating the coefficients o,
The ion density can be calculated as
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Comparing (9) with (4) we see that [3 Z B, &, so that Egs. (8) read
ZBMV_V Z (L=0,1,..,M*—1). (11)
The expansion coefficients in Egs. (2) and (5) can be written as coefficient vectors & = (¢, &y, ...

and Ee = (Eg, ET, e Efw.e>, respectively. The a,’s can then be calculated economically by

solving Egs. (11) in the matrix form

Ca=§,

(12)

where ? is a M x M dimensional coefficient matrix, with M’¢ = M%* =: M. According to (11),

the matrix equation (12) has the form
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Figure 1: Comparison of the inverse profile x (@) calculated with our expansions (2)—(6) with that of Ref. [3].

Figure 1 shows the comparison of the inverse potential profile calculated with our expansions
(2)-(6) with that of [3], for the special case of Boltzmann-distributed electrons. The stars denote
the maxima of the respective curves, i.e., the sheath-edge singularity (except for M = 1, where
the "maximum" is actually a supremum). Note that for the x (¢) profile from [3] we have x, =
0.5721 and @, = 0.8540. The values of x, and ¢, for different values of M are given in Table
1, from which we may conclude that for M > 5 our expansion yields reasonable to excellent

results.

Acknowlegments. This work has been supported by the Higher Education Commission of
Pakistan and by the European Communities under the Contract of Association between EU-
RATOM and the Austrian Academy of Sciences. It was carried out within the framework of
the European Fusion Development Agreement. The views and opinions expressed herein do not

necessarily reflect those of the European Commission.

References
[1] L. Tonks and I. Langmuir, Phys. Rev. 34, 876 (1929).

[2] E.R. Harrison and W. B. Thompson, Proc. Phys. Soc. London 74, 145 (1959).
[3] K.-U. Riemann, Phys. Plasmas 13, 063508 (2006).

[4] M. Kamran and S. Kuhn , J. Plasma Physics, 76, 617 (2010).



