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Introduction

Neoclassical tearing modes (NTMs) are resistive MHD instabilities characterised by mag-

netic islands. They limit tokamak performance by reducing the core pressure. Controlling NTMs

in future devices such as ITER is crucial. In toroidal geometry, the finite banana width of trapped

particle orbits gives rise to the neoclassical polarisation current, induced when the magnetic is-

land is moving relative to the plasma. It has been suggested that the neoclassical polarisation

current may provide the threshold mechanism [1]: sufficiently small magnetic islands (typically

below 1cm in width) shrink away, while larger ones grow due to the bootstrap drive [2]. Under-

standing this threshold physics is essential for developing an effective NTM control system.

This paper employs drift kinetic theory developed in Refs.[1, 3] to study the collision fre-

quency dependence of the neoclassical polarisation current contribution to the modified Ruther-

ford equation, characterised by the coefficient g(νii,ε,ω). Here, νii is the ion-ion collision fre-

quency, ε is the inverse aspect ratio and ω is the island propagation frequency. The neoclassical

polarisation current depends strongly on the collision frequency regime: O(ε3/2) smaller in the

collisionless limit (νii ≪ εω) than in the collisional limit (νii ≫ εω) [1, 3]. The leading order

dependence on νii in the low collision frequency limit is found to scale as
√

νii/εω . This origi-

nates from the collisional layer in the vicinity of the trapped/passing boundary in the pitch angle

space, ∆λ ∼√νii/εω . We extend these analytic results to determine the full collision frequency

dependence of the neoclassical polarisation current. As in Ref.[1], the electrostatic potential is

determined by quasineutrality. In order to focus on the role of collision frequency, additional

physics such as finite Larmor orbit effects are not taken into account here. In addition, we con-

sider the contribution to the current perturbation away from the island separatrix only, avoiding

the complicated physics associated with a layer that exists there (such as finite radial diffusion).

Our new results in the low to intermediate collision frequency regime (νii ≲ εω) is of particular

interest, as the plasma parameters for the ITER steady state scenario [4] lie in this regime.

Ion Response

The ion response to the perturbed magnetic geometry is described by the drift kinetic equa-

tion. The non-adiabatic response, gi, is expanded in terms of two small parameters: ∆ =w/r and

δi = ε1/2ρθ i/w. The full derivation of ion and electron responses is given in Ref.[1]. At leading
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order (O(δ 1
i ∆0)), gi involves a free function h̄i, which arises from integration along unperturbed

field lines; this function carries the leading order collision frequency dependence. h̄i is deter-

mined from a constraint equation obtained by averaging the higher order equations over these

unperturbed field lines:

−Rqk∥ ⟨Rq
v∥

ω
mψ̃

dh
dΩ

∂g(1,0)
i

∂ξ

RRRRRRRRRRRRΩ⟩θ +⟨
Rq
v∥

Ci(g(1,0)
i )⟩

θ
= 0 (1)

for the passing particles, where ⟨...⟩θ denotes averaging over a period in poloidal angle θ and Ci

is a model collision operator. The function h represents the electrostatic potential profile in the

vicinity of the island (related to the electron density profile) and Ω is the normalised perturbed

flux, with Ω = 1 labelling the island separatrix (See Ref.[1] for other parameters, which are

standard). For the trapped particles, the constraint equation is:

−Rqk∥
ω

mψ̃
dh
dΩ
⟨Rq∣v∥ ∣⟩θ

∂ h̄i

∂ξ
∣
Ω
+⟨Rq∣v∥ ∣Ci (h̄i)⟩

θ
= 0, (2)

where ⟨...⟩θ is averaging between the bounce points. Eqs.(1) and (2) have been solved analyt-

ically in the collisionless and collisional limits by neglecting appropriate terms. Here, the full

constraint equation is solved numerically for an arbitrary value of νii/εω .

Results

The numerical result for g(νii,ε,ω) as a function of νii/εω is presented in Figure 1(a). A

positive value of g corresponds to a stabilising contribution of the neoclassical polarisation

current to the modified Rutherford equation. The numerical result is in excellent agreement

with the analytic solutions in the collisionless and collisional limits. The transition from the

collisionless to the collisional limit occurs between νii/εω ∼ 0.1 and νii/εω ∼ 100, for ε = 0.1. In

Figure 1(b) the gradient of g(νii,ε,ω) in the low collision frequency limit is plotted, illustrating

that the leading order collisional correction to g is indeed O(√νii/εω) in the low collision

frequency limit, aside from the weak logarithmic dependence which offsets the gradient from

the expected value of 1/2.

Figure 1(a) shows a case where g(νii,ε,ω) is positive across all of the collision frequency

range. However, the sign of g depends on the relative size of ω with respect to the ion diamag-

netic frequency, ω∗i. The variation of g with ω/ω∗i is plotted in Figure 2(a), for ε = 0.1 and

ηi = 0.1, where ηi is the ratio of the density and ion temperature gradient length scales. Con-

sidering the explicit dependence of g on ω in the analytic limits given in Refs.[1, 3], we note
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Figure 1: (a): Plot of g(νii,ε,ω) as a function of νii/εω (solid curve), for ε = 0.1, ω/ω∗i = 2.5 and ηi = 1.0.
The dashed lines represent the values of g in the analytic limits. (b): Plot of the gradient: dlog(g(νii)−g(0))/dνii
against νii/εω for ε = 0.1, ω/ω∗i = 2.5 and ηi = 0.5. The dashed curve is the gradient taken from the analytic result,
while the solid curve is the gradient taken from the new numerical result.

that g is negative if 0 < ω/ω∗i < (1+ηi) in the collisionless limit, or if 0 < ω/ω∗i < 1+(1+k)ηi

in the collisional limit. As is shown in Figure 2(a), g is negative everywhere in the collision

frequency domain for sufficiently small ω (< ω∗i), and is positive everywhere for ω > ω∗pi, as

expected. Here, ω∗pi =ω∗i(1+ηi) and k(ε) = −1.17 fc(ε) [5] is the familiar coefficient from the

neoclassical theory with fc(ε) the passing particle fraction. However, when 0 < ω ≲ ω∗pi, the

sign of g changes as the collision frequency is increased. Furthermore, there is a range of ω

where g has a maximum in the intermediate collision frequency regime (see Figures 2(a) and

2(b)). This new result implies that whether the neoclassical polarisation current can stabilise the

magnetic island depends not only on the plasma parameters (e.g. collision frequency), but on ω

as well.

Lastly, we examine the relationship between the coefficient k(ε) and the critical value of ω

in the collisional limit, ωcrit , for which the sign of g reverses. From the analytic expression for

g(ω) in the collisional limit [3], ωcrit =ω∗pi+kηiω∗i. Explicitly evaluating fc(ε) gives k =−0.67

and this expression correctly predicts our observed ωcrit = 1.33ω∗i, for ε = 0.1 and ηi = 1.0

(Figure 2(a)). Similarly, for ε = −0.15 and ηi = 1.0 (Figure 2(b)), k = −0.57 correctly gives our

observed ωcrit = 1.43ω∗i. It should be noted that in both cases the value of k is substantially

different from its asymptotic value, k(ε = 0) = −1.17, even though ε is small.

Conclusion

We have determined the full collision frequency dependence of the neoclassical polarisa-

tion current using drift kinetic theory. Our new results show that the collisional correction to

the neoclassical polarisation current becomes important even for very low collision frequency,
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Figure 2: (a): Plot of g(νii,ε,ω) vs. νii/εω for ε = 0.1 and ηi = 1.0, for different values of ω . The numbers on
the right hand side of the graph are the values of ω/ω∗i for each curve. (b): g(νii,ε,ω) vs. νii/εω for ε = 0.15 and
ηi = 1.0. The numbers on the right hand side of each graph shows the values of ω/ω∗i.

νii/εω ≳ 0.1 (ε = 0.1). We have also revealed the complicated dependence of the neoclassical po-

larisation current on both the collision frequency regime and the island propagation frequency.

Whether the neoclassical polarisation current can stabilise the NTMs depends crucially on the

relative rotation between the plasma and the island, as well as the collision frequency regime.

Using the parameters given in Ref.[4], we find that the collision frequency regime of the ITER

steady state scenario lies in the range 0.06≲ νii/εω ≲ 0.34, with ε ≃ 0.32. This is the range where

the neoclassical polarisation current is particularly sensitive to the collision frequency, which

may have implications for the NTM control strategy on ITER.
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