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Abstract: A three dimensional model of plasma-sheath resonance in a plasma reactor is de-

scribed and a complete solution is given for the case of a spherical plasma.

Plasma-sheath resonance in a finite geometry.

Previous theoretical studies of the phenomena of plasma-sheath resonance in an R.F. plasma

have been restricted to plane geometry [1-3]. Uniform and non-uniform plasmas were consid-

ered and in the latter case, for certain values of the parameters, the plasma-sheath resonance

coincides with the local plasma frequency, leading to an absorption of energy [3]. The present

work addresses the problem of finite geometry and, as an illustration, a complete solution is

presented for case of a spherical plasma. In the previous work the plasma was represented by

an equivalent circuit as shown in Figure 1.

Figure 1: A circuit model to illustrate

plasma-sheath resonance. Previous work in-

cluded both uniform and non-uniform plas-

mas [1,2,3]

In the present work the plasma is described in

terms of its dielectric properties. It is found that

the plasma-sheath frequency depends on both the

geometry and the plasma frequency as in the one-

dimensional (plane) case.

The plasma is considered to be uniform and to

consist of cold collision-free electrons and immo-

bile ions, the relative permittivity being given by

εr =
(

1− ω2
pe

ω2

)
. The sheath is represented by a

vacuum region since there are relatively few elec-

trons, and the positive ions are little perturbed by

R.F. fields. Assuming that the plasma is uniform

∇2V = 0 in both regions, using the quasi-static approximation ∇×E = 0. The latter is an ex-

cellent approximation for a range of radio frequencies and reactor dimensions. The boundary
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conditions are [D⊥] = 0 and [E‖] = 0 at the plasma boundary, and on the electrodes E‖ = 0 and

E⊥ = σ/ε0, where σ is the surface charge density. In the absence of an applied magnetic field

magnetic forces are negligible; it is interesting to note, however, that the magnetic field still

plays a rôle in that the Poynting vector, E×H, describes the flow of electromagnetic energy in

the system. Let us consider first the case of a dielectric sphere in a uniform field E0, Laplace’s

equation can readily be solved [4] to yield the following result for the electric field inside the

sphere where ε1 and ε2 are the permittivities of the sphere and the outer region.

E1 =
3ε2

ε1 +2ε2
E0 (1)

In the case of a plasma sphere this becomes

E1 =
1(

1− ω2
pe

3ω2

)E0 (2)

It is seen that the plasma sphere has a resonant frequency ωpe/
√

3, where ωpe is the electron

plasma frequency, and that the electric field changes sign at this frequency.

Referring to the complete solution of Laplace’s equation in both regions [4] we find that,

inside the sphere

V1 =− 1(
1− ω2

pe
3ω2

)E0r cosθ (3)

and outside the sphere

V2 =−
(

1+
r3

p

r3 ·
ω2

pe/ω2

(3−ω2
pe/ω2)

)
E0r cosθ (4)

Let γ = ωpe/
√

3ω , then

V1 =− 1
(1− γ2)

E0r cosθ (5)

and

V2 =−
(

1+
r3

p

r3 ·
γ2

1− γ2

)
E0r cosθ (6)

where the potential is measured with respect to the midplane (θ = π/2). The electric field is

given by E =−∇V so that inside the sphere

E1 = ur
1

(1− γ2)
E0 cosθ −uθ

1
(1− γ2)

E0 sinθ (7)

which is a uniform field, and outside the sphere

E2 = ur

[
1−

2r3
p

r3 ·
γ2

(1− γ2)

]
E0 cosθ −uθ

[
1+

r3
p

r3 ·
γ2

(1− γ2)

]
E0 sinθ (8)
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which can be rewritten as

E2 =
[

urE0 cosθ −uθ E0 sinθ
]
−

r3
pγ2

(1− γ2)

[
ur

2E0 cosθ
r3 +uθ

E0 sinθ
r3

]
(9)

It is seen that the field is a combination of a uniform field E0 and a dipole field due to the

polarisation of the plasma sphere.

Application to a plasma reactor

We now seek a solution for a system exhibiting plasma-sheath resonance in which a spherical

plasma contains a uniform electric field. It is seen from the above analysis, eqn.(6), that this is

the case for two hemispherical electrodes of radius R, given by

R3 = r3
p

γ2

(γ2−1)
(10)

At this radius V2 = 0, E2θ = 0 and E2r = 3E0 cosθ . At the surface of the plasma sphere

V1 =
E0

(γ2−1)
rp cosθ (11)

Figure 2 illustrates the field configuration for γ2 = 10/9 and γ2 = 5/4 respectively.

Figure 2: The electric field configuration applicable for plasma-sheath resonance for (a) γ = (10/9)1/2

and (b) γ = (5/4)1/2. The unit of distance is the radius of the plasma sphere. The density of the lines of

force is not proportional to the strength of the electric field.

The plasma sphere becomes polarized and most, but not all, of the associated electric field

lines leaving the surface charge extend from the plasma to the surrounding R.F. electrodes. The

remaining field lines begin and end on the plasma sphere. Figure 3 illustrates the application to

a radio frequency reactor which is fed by a current source.
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Figure 3: A schematic diagram of a spherical system employing plasma-sheath resonance. An external

current source is connected to two closely spaced hemispherical electrodes.

The resonant frequency of the plasma sphere itself is ωpe/
√

3, where ωpe is the electron

plasma frequency, and corresponds to γ2 = 1/3. In the present study the plasma-sheath reso-

nance is found for values of γ exceeding unity. The value of the plasma-sheath resonant fre-

quency depends on the radii of the plasma and the hemispherical electrodes. This behaviour is

analogous to that of the one-dimensional case in which the resonance frequency depends on both

the electron plasma frequency and the geometry. At the plasma-sheath resonance the impedance

seen by the external circuit is zero, such that high currents could be injected. In practice some

collisions will take place with a corresponding injection of energy into the plasma. Extension

to other geometries is straightforward, simply involving solutions of Laplace’s equation, but the

case of a non-uniform three-dimensional plasma remains to be considered. The latter situation

would involve the absorption of energy associated with the coincidence of the plasma-sheath

resonance with a local plasma resonance referred to above [3].
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