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Abstract: A three dimensional model of plasma-sheath resonance in a plasma reactor is de-

scribed and a complete solution is given for the case of a spherical plasma.

Plasma-sheath resonance in a finite geometry.

Previous theoretical studies of the phenomena of plasma-sheath resonance in an R.F. plasma
have been restricted to plane geometry [1-3]. Uniform and non-uniform plasmas were consid-
ered and in the latter case, for certain values of the parameters, the plasma-sheath resonance
coincides with the local plasma frequency, leading to an absorption of energy [3]. The present
work addresses the problem of finite geometry and, as an illustration, a complete solution is
presented for case of a spherical plasma. In the previous work the plasma was represented by
an equivalent circuit as shown in Figure 1.

In the present work the plasma is described in
terms of its dielectric properties. It is found that ﬁmm """"" MMHF@l
the plasma-sheath frequency depends on both the N
geometry and the plasma frequency as in the one-

dimensional (plane) case.

Sheath Plasma Sheath

The plasma is considered to be uniform and to

consist of cold collision-free electrons and immo-
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bile ions, the relative permittivity being given by
2 . . L .
g = (1 B “’1}26>' The sheath is represented by a Figure 1: A circuit model to illustrate
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vacuum region since there are relatively few elec-

cluded both uniform and non-uniform plas-
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R.F. fields. Assuming that the plasma is uniform

trons, and the positive ions are little perturbed by

V2V = 0 in both regions, using the quasi-static approximation V x E = 0. The latter is an ex-

cellent approximation for a range of radio frequencies and reactor dimensions. The boundary
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conditions are [D| | = 0 and [E|| = 0 at the plasma boundary, and on the electrodes £ = 0 and
E| = 0/, where o is the surface charge density. In the absence of an applied magnetic field
magnetic forces are negligible; it is interesting to note, however, that the magnetic field still
plays a rdle in that the Poynting vector, E x H, describes the flow of electromagnetic energy in
the system. Let us consider first the case of a dielectric sphere in a uniform field Eq, Laplace’s
equation can readily be solved [4] to yield the following result for the electric field inside the

sphere where €; and &, are the permittivities of the sphere and the outer region.
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In the case of a plasma sphere this becomes
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It is seen that the plasma sphere has a resonant frequency @,/ /3, where Oy, is the electron

plasma frequency, and that the electric field changes sign at this frequency.

Referring to the complete solution of Laplace’s equation in both regions [4] we find that,

inside the sphere
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where the potential is measured with respect to the midplane (6 = 7 /2). The electric field is

given by E = —VV so that inside the sphere
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Ei=u,——Fycos0 —ug— E;sin0 @)
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which is a uniform field, and outside the sphere
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which can be rewritten as

(€))
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It is seen that the field is a combination of a uniform field Eg and a dipole field due to the

E; = |u,Epcos 8 —ugEjsin 9} —

polarisation of the plasma sphere.

Application to a plasma reactor

We now seek a solution for a system exhibiting plasma-sheath resonance in which a spherical
plasma contains a uniform electric field. It is seen from the above analysis, eqn.(6), that this is
the case for two hemispherical electrodes of radius R, given by

2
=L (10)
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At this radius V, =0, Eyg = 0 and E,, = 3E(cos 8. At the surface of the plasma sphere

Vi rpcos 6 (1)

0
(¥*—1)

Figure 2 illustrates the field configuration for y> = 10/9 and y*> = 5/4 respectively.
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Figure 2: The electric field configuration applicable for plasma-sheath resonance for (a) y = (10/9)'/2
and (b) y = (5/4)'/2. The unit of distance is the radius of the plasma sphere. The density of the lines of

force is not proportional to the strength of the electric field.

The plasma sphere becomes polarized and most, but not all, of the associated electric field
lines leaving the surface charge extend from the plasma to the surrounding R.F. electrodes. The
remaining field lines begin and end on the plasma sphere. Figure 3 illustrates the application to

a radio frequency reactor which is fed by a current source.
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Figure 3: A schematic diagram of a spherical system employing plasma-sheath resonance. An external

current source is connected to two closely spaced hemispherical electrodes.

The resonant frequency of the plasma sphere itself is @, / V/3, where Wpe 1s the electron
plasma frequency, and corresponds to y> = 1/3. In the present study the plasma-sheath reso-
nance is found for values of y exceeding unity. The value of the plasma-sheath resonant fre-
quency depends on the radii of the plasma and the hemispherical electrodes. This behaviour is
analogous to that of the one-dimensional case in which the resonance frequency depends on both
the electron plasma frequency and the geometry. At the plasma-sheath resonance the impedance
seen by the external circuit is zero, such that high currents could be injected. In practice some
collisions will take place with a corresponding injection of energy into the plasma. Extension
to other geometries is straightforward, simply involving solutions of Laplace’s equation, but the
case of a non-uniform three-dimensional plasma remains to be considered. The latter situation
would involve the absorption of energy associated with the coincidence of the plasma-sheath

resonance with a local plasma resonance referred to above [3].
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