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Dissipative Yukawa systems both 3D and 2D are under concern. These systems are widely 

used [1] as analytical models for such non-ideal dissipative systems as dusty component of 

complex plasma. 

In this paper the following parameters were used to characterize a system state. One of them 

is the effective non-ideality parameter  [2-4]: 

* = G1·(1++/2)·exp(-)/·lp    (1) 

Here T is temperature in energy units, the “reduced” temperature  ≡ T/M, where M is a 

macroparticle’s mass, G1 is dimensionless coefficient: G1 = 1.5 for 2D and 1 for 3D, the 

coupling parameter  ≡ lp/rD where lp is mean interparticle distance, and rD is Debye length. 

This dimensionless parameter describes space scaling properties of the systems concerned. 

The value of  ≡ (eZ)2/M, where eZ is a macroparticle’s charge. 

Time scale of the systems studied can be characterized by means of the effective frequency 

[2-4]: 

* = G2·(1++/2)·exp(-)/lp
3    (2) 

Here G2 = 2 for 2D systems and 1 for 3D systems. 

The next dimensionless parameter to describe system’s time scaling is the scaling parameter  

≡ */fr. Here fr is the value relevant to frequency of collisions between macroparticles and 

molecules of the background media (i.e. the one that produces plasma). This frequency 

describes energy dissipation (due to friction) along with energy inflow (due to Brownian 

collisions of surrounding gas molecules) thus characterizing the thermostat that is responsible 

for equilibrium temperature T in the system.  

In non-ideal systems, where interparticle interaction is significant thermal conductivity 

depends on pair potential. However in this paper we pay attention to the kinetic part of 

thermal conductivity K which corresponds to free diffusion of a particle’s kinetic energy. It is 

important to study because this approach allows us to find certain relations as it is described 

below. Thermal conductivity is measured according to Green – Kubo approach when time 

autocorrelation function of heat flux fluctuations is studied. Since heat flux fluctuation is 

represented as 
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JK = s-1(MV2/2 - ‹MV2/2›)V      (3) 

where s = 2 for 2D systems and s = 3 for 3D systems, we can derive [5] that the K coefficient 

is equal to: 

K = (n2·kB·V/s·2)limt→∞DK(t)    (4) 

where DK(t) is heat transfer evolution function i.e. integral over time of heat flux fluctuation 

autocorrelation function s-1‹JK(0)JK(t)›. 

For two dimensional systems it was found that at large values of the effective non-ideality 

parameter  the kinetic part of thermal conductivity K decreases with  growing according 

law ~1/x, where  is close to 1 (see Fig. 1a). As for weak coupling when 0 <  < 30 it was 

found that there is linear dependency K ~  (see Fig. 1b). It can also be seen that at large 

values of  system has larger values of thermal conductivity K. 

Fig. 1a. The dependence of kinetic thermal 
conductivity K (in erg/s·K) on the effective 
nonideality parameter * for large values * > 30 for 
2D systems (points: ● – for  = 0.25 and ○ - for  = 1). 

Fig. 1b. The dependence of kinetic thermal 
conductivity K (in erg/s·K) on the temperature  for 
small values * < 30 for 2D systems (points: ● – for  
= 0.25 and ○ - for  = 1; solid line for  = 0.25 and 
dotted line for  = 1 – are linear approximation). 

 

For three-dimensional systems it was found that the kinetic part of thermal conductivity K  

 
Fig. 2. The dependence of kinetic thermal conductivity K 
(in erg/cm·s·K) for 3D systems (points: for  = 0.25) on *. 
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has significantly different dependence on non-ideality parameter  - it increases with growth 

of the  value (see Fig. 2). 

Two experimental works [6, 7] were carried out to investigate thermal conductivity of dusty 

component of complex plasma of micron-sized Al2O3 particles in RF-discharge plasma. The 

values obtained in these works are show in comparison with numerically calculated values on 

Fig. 3. It is seen that at small values of  exists correspondence between analytical and 

experimental results. 

Thermal capacity at constant volume CV is calculated according to fluctuation approach [8]: 

u)2> = 2 CV     (1) 

Here CV is dimensionless thermal capacity: the specific thermal capacity cV (i.e. per unit 

mass) can be represented as cV = CVkB/M. 

Results of thermal capacity of two dimensional system studying are described below (see Fig. 

4). It was found that at low  the value of CV equals to 1 as it should be for ideal gas 

asymptotic. For strongly non-ideal systems value of CV tends to equal 2 in accordance with 

well-known relation where we have equal thermal capacity 1/2 for each degree of freedom: in 

strongly coupled systems there are 4 of them. 

The dependence CV() proved to be independent of the value of  see linear regression 

approximation (dotted and solid lines) in Fig. 4. 

Fig. 3. Comparison between experimentally (■) [6, 7] 
and numerically (●) measured kinetic thermal 
conductivity K in dependence on *for  = 0.25. 

Fig. 4. The dependence of thermal capacity CV for 2D 
systems (points: ● – for  = 0.25 and ○ - for  = 1) on 
*. Lines (solid for  = 0.25 and dotted for  = 1) are 
linear regression approximation. 

Another important result of this work is relevant to the value 

 ≡ D(t)/DK(t),     (5) 

where D(t) is mass transfer evolution function and DK(t) is heat transfer evolution function 

(both being integrals over time of corresponding autocorrelation functions). At low  this 
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quantity proved to be equal to thermal capacity at constant pressure CP. In Fig. 5 one can see 

the dependence of  on  at high temperatures. 

 
Fig. 5. The dependence of  parameter on * for: 3D (▲), 2D for  = 0.25 
(●) and  = 1 (○). Polynomial approximations are also shown: for: 3D 
(long dotted line), 2D for  = 0.25 (solid line) and  = 1 (short dotted 
line). 

It can be seen that the dependencies  for 2D and 3D systems tend to well-known ideal 

asymptotic at  → 0 which is equal to 2 for 2D system and 2.5 for 3D system. 
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