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1. Introduction In this work, a Langevin approach, that includes collisional diffusion

in velocity space will be used to analyze the perpendicular runaway dynamics in toka-

mak plasmas. An investigation of the runaway probability in velocity space will yield

a criterion for runaway, which will be shown to be consistent with the results provided

by the simpler test particle description [1]. The role played by the perpendicular (to

the magnetic field) collisional scattering will be also investigated. Pitch angle scattering

increases the perpendicular electron temperature and the electron population in the run-

away plateau region. The perpendicular broadening of the runaway distribution function,

and the resulting enhancement of the runaway production rate will be discussed.

2. Langevin Equations for Runaway Electrons Langevin equations (LE) con-

stitute a particle approach for studying the electron motion under the stochastic effect

of the collisions with the plasma particles, equivalent to the traditional Fokker-Planck

(FP) kinetic approach in the infinite particle limit,but more easily generalized to more

complex geometry:
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Ai ≡ lim∆t→0 〈∆vi〉 /∆t and Bik ≡ lim∆t→0 〈∆vivk〉 /∆t are the FP coefficients, ~ξ is a

gaussian random variable, and the equivalence between both descriptions is given by the

relation between the LE and FP coefficients:
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where the Stratonovich algebra has been used.

The Langevin equations for runaway electrons have been obtained following Ref. [2],

including the force due to the accelerating electric field, e ~E||/me, and the ion contribution

to the stochastic collision term simplified taking the limit of very cold ions, me/Mi << 1,

resulting in:
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Two different gaussian noises, ~ξ and ~η, are considered for the collisions with the bulk

electrons and ions, respectively, Zeff is the effective ion charge, ~v is normalized to the
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electron thermal velocity, vth ≡ (Te/me)
1/2, ε ≡ E||/Ec, τ ≡ tν0, and Ec ≡ meveν0/e,

ν0 ≡ nee
4lnΛ/4πε2

0m
2
ev

3
e ; φ(x),Ψ(x) (x ≡ v/

√
2) are the standard error function and the

Chandrasekhar function, respectively.

3. Runaway Probability. Conditions for Runaway The Langevin equations

for runaway electrons can be used to build up the runaway probability map in (v||, v⊥)

space. Electrons are launched with given initial conditions in velocity space, the fraction

of escaping electrons providing the runaway probability. Fig. 1 (left) shows the calculated

runaway probability (R) vs the normalized parallel electron velocity, v||, assuming v⊥ =

0, ε = 0.04 and Zeff = 1, 3, 5, 10. The runaway probability sharply increases in the

direction of the electric field force (v|| > 0 in the figure) and a critical velocity for runaway

generation, vr, can be introduced using the condition R(vr) ≡ 50%. An analysis of the

dependence of vr on the plasma conditions in the range ε = 0.04 − 0.1 and Zeff =

1 − 10, results in vr ∼ (2 + Zeff )0.23±0.01 ε−0.475±0.005 and the width of the runaway

generation region [determined by the condition R(v||) = 25 − 75%], on the order ∼
10% vr. This estimate of the critical velocity, vr, is lower than the Dreicer estimate,

vD = (2+Zeff )0.5 ε−0.5, determined by the balance between the acceleration in the toroidal

electric field and the collisional friction losses in parallel (to the magnetic field) direction.

Such a decrease of the critical velocity, vr, is the result of considering the perpendicular

electron dynamics, which relaxes the conditions for runaway. Perpendicular energy gain

due to collisions reduces the net collisional electron energy losses in comparison with the

loss of parallel velocity which, as a result, is itself reduced, dv||/dt ∼ −v||/v3. Hence,

electrons can be found in velocity space initially losing parallel momentum but gaining

energy which, if the energy gain is large enough, could finally become runaway.

This Dreicer’s criterion for runaway, vr, is based on the assumption that most of

the runaways are produced in the direction of the electric field force (v⊥ = 0). More

generally, the runaway probability in (v||, v⊥) space should be considered, as illustrated

in right frame of Fig. 1 (ε = 0.04, Zeff = 1). The runaway region might be defined as the

region in velocity space lying above the R(v||, v⊥) = 50% line (the runaway separatrix).

These criteria for runaway, both vr and the runaway separatrix, based on the runaway

probability analysis, are found to be consistent with the results provided by a single

particle description of the runaway dynamics describing average electron trajectories in

absence of collisional diffusion [1], which yields vr ∼ (2 + Zeff )0.25 ε−0.5 and a runaway

separatrix indicated by the full line in Fig. 1.

4. Runaway Distribution Function and Production The Langevin equations for

runaway electrons can be used to yield the runaway distribution function and, from this,

its first and second perpendicular velocity moments, i.e., the parallel runaway distribution

function, F (v||) = 〈f〉 = 2π
∫∞

0 v⊥ f dv⊥, and the effective perpendicular temperature,

T⊥(v||) = 〈v2
⊥f〉 /2F , respectively. The initial electron velocities are randomly distributed

over a Maxwellian distribution and evolved in time according to Eq. (3). The advanced

distribution function is built by a standard statistical method, until a steady state is

reached. Top Fig. 2 (left) shows the resulting F (v||) (full line), for ε = 0.06 and Zeff = 1,

together with the thermal Maxwellian distribution (dashed line) for illustration. The
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Figure 1: Left: Runaway probability R vs v||, for v⊥ = 0, ε = 0.04, and Zeff = 1, 3, 5, 10;

Right: Runaway probability contour map (ε = 0.04; Zeff = 1). The runaway separatrix

provided by the test particle description [1] (full line) is also included.

runaway plateau starts close to the critical velocity, vr, but the distribution separates

from the Maxwellian much before. Bottom Fig. 2 (left) shows T⊥(v||) (normalized to the

bulk temperature), providing a local (in v||) measure of the perpendicular broadening

of the distribution due to pitch angle scattering. Although fast electrons are much less

collisional than thermal electrons, pitch angle scattering of fast electrons leads to a per-

pendicular temperature in the runaway region which is substantially larger than the bulk

temperature (T⊥ > 1). Moreover, because of the perpendicular scattering, fast electrons

are continuously diffused into and scattered out the runaway plateau region. As a result,

even for v|| < vr, the distribution function is perpendicularly broadened and deviates

from a Maxwellian distribution (top figure). On the other hand, the height, F (v||), of the

runaway plateau region significantly increases and, hence, the runaway production rate,

the increase resulting from the larger number of electrons with the enhanced T⊥.

The solution to the steady-state one dimensional (integrated over the perpendicular

velocity) Fokker-Planck equation for runaway electrons allows to get an approximation

for the runaway production rate, λ, as a function of T⊥(v||). It can be shown [3]:

λ ∝
[∫ ∞

0

v3
||

1 + (1 + Zeff )T⊥(v||)
exp

(
−
∫ v||

0

v (εv2 − 2− Zeff )

1 + (1 + Zeff )T⊥(v)
dv

)
dv||

]−1

(4)

The effect of the perpendicular broadening on the runaway production rate can then

be quantified by the ratio of the runaway production rate including the perpendicular

broadening of the distribution function [T⊥(v||)] to the value estimated assuming T⊥ = 1

(Maxwellian distribution in perpendicular direction), illustrated in right Fig. 2. The

perpendicular broadening of the electron distribution increases the runaway production

by several orders of magnitude in comparison with the case of a perpendicular thermal

Maxwellian, the effect increasing with the plasma collisionality (larger Zeff and lower ε).
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Figure 2: Left: F (v||) (top) and T⊥(v||) (bottom) for ε = 0.06 and Zeff = 1. The parallel

thermal Maxwellian distribution (dashed line; top) and the critical runaway velocity, vr

are also shown for illustration; Right: Ratio of the runaway production rate including

the perpendicular broadening of the distribution function [T⊥(v||)] to the value estimated

assuming T⊥ = 1 vs Zeff (full line: ε = 0.04; dashed line: ε = 0.08).

It is therefore worthwhile to remark the opposite effects on the runaway population

of the collisional dynamics in the parallel and perpendicular directions (to the toroidal

magnetic field). Parallel collisional friction balances the energy gain in the toroidal elec-

tric field, slowing down the electrons and reducing the runaway growth rate. In contrast,

perpendicular energy gain due to collisions reduces the electron energy losses,relaxing the

conditions for runaway. Moreover, because of the perpendicular scattering, fast electrons

are continuously diffused into the runaway plateau region which, as a result, enhances

the runaway production rate. It is well-known that a decrease of the electric field (ε) or

an increase of Zeff , increasing the plasma collisionality and the parallel friction losses,

reduce the runaway production rate, but this reduction, because of the collisional perpen-

dicular dynamics, as illustrated in Fig 2 (right), is much smaller than would be expected

from the parallel electron dynamics only.
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