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1. Introduction In this work, a Langevin approach, that includes collisional diffusion
in velocity space will be used to analyze the perpendicular runaway dynamics in toka-
mak plasmas. An investigation of the runaway probability in velocity space will yield
a criterion for runaway, which will be shown to be consistent with the results provided
by the simpler test particle description [1]. The role played by the perpendicular (to
the magnetic field) collisional scattering will be also investigated. Pitch angle scattering
increases the perpendicular electron temperature and the electron population in the run-
away plateau region. The perpendicular broadening of the runaway distribution function,
and the resulting enhancement of the runaway production rate will be discussed.

2. Langevin Equations for Runaway Electrons Langevin equations (LE) con-
stitute a particle approach for studying the electron motion under the stochastic effect
of the collisions with the plasma particles, equivalent to the traditional Fokker-Planck
(FP) kinetic approach in the infinite particle limit,but more easily generalized to more
complex geometry:
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relation between the LE and FP coefficients:
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where the Stratonovich algebra has been used.

The Langevin equations for runaway electrons have been obtained following Ref. [2],
including the force due to the accelerating electric field, eEH /m., and the ion contribution
to the stochastic collision term simplified taking the limit of very cold ions, m./M; << 1,
resulting in:
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Two different gaussian noises, ,;5’ and 77, are considered for the collisions with the bulk
electrons and ions, respectively, Z.;s is the effective ion charge, ¥’ is normalized to the
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electron thermal velocity, vy, = (Te/me)l/Q, e = E)/E,;, T = twy, and E. = mev.1p/e,
vy = neellnA /areim?v3; ¢(z), ¥(x) (z = v/+/2) are the standard error function and the

e’er
Chandrasekhar function, respectively.

3. Runaway Probability. Conditions for Runaway The Langevin equations
for runaway electrons can be used to build up the runaway probability map in (v, v, )
space. Electrons are launched with given initial conditions in velocity space, the fraction
of escaping electrons providing the runaway probability. Fig. 1 (left) shows the calculated
runaway probability (R) vs the normalized parallel electron velocity, v, assuming v, =
0, € = 0.04 and Z.5y = 1,3,5,10. The runaway probability sharply increases in the
direction of the electric field force (v); > 0 in the figure) and a critical velocity for runaway
generation, v,, can be introduced using the condition R(v,) = 50%. An analysis of the
dependence of v, on the plasma conditions in the range € = 0.04 — 0.1 and Z.s; =
1 — 10, results in v, ~ (2 + Z.pp)"235001 047520005 and the width of the runaway
generation region [determined by the condition R(v)) = 25 — 75%], on the order ~
10%v,. This estimate of the critical velocity, v,, is lower than the Dreicer estimate,
vp = (24 Zesp)™" €02, determined by the balance between the acceleration in the toroidal
electric field and the collisional friction losses in parallel (to the magnetic field) direction.
Such a decrease of the critical velocity, v,, is the result of considering the perpendicular
electron dynamics, which relaxes the conditions for runaway. Perpendicular energy gain
due to collisions reduces the net collisional electron energy losses in comparison with the
loss of parallel velocity which, as a result, is itself reduced, dv)/dt ~ —uvj /v3. Hence,
electrons can be found in velocity space initially losing parallel momentum but gaining
energy which, if the energy gain is large enough, could finally become runaway.

This Dreicer’s criterion for runaway, v,, is based on the assumption that most of
the runaways are produced in the direction of the electric field force (v, = 0). More
generally, the runaway probability in (v, v, ) space should be considered, as illustrated
in right frame of Fig. 1 (e = 0.04, Z.y; = 1). The runaway region might be defined as the
region in velocity space lying above the R(v), v, ) = 50% line (the runaway separatrix).
These criteria for runaway, both v, and the runaway separatrix, based on the runaway
probability analysis, are found to be consistent with the results provided by a single
particle description of the runaway dynamics describing average electron trajectories in
absence of collisional diffusion [1], which yields v, ~ (2 + Z.;;)*?° e %5 and a runaway
separatrix indicated by the full line in Fig. 1.

4. Runaway Distribution Function and Production The Langevin equations for
runaway electrons can be used to yield the runaway distribution function and, from this,
its first and second perpendicular velocity moments, i.e., the parallel runaway distribution
function, F(v)) = (f) = 27 [yCv. fdvy, and the effective perpendicular temperature,
T\ (v)) = (v} f) /2F, respectively. The initial electron velocities are randomly distributed
over a Maxwellian distribution and evolved in time according to Eq. (3). The advanced
distribution function is built by a standard statistical method, until a steady state is
reached. Top Fig. 2 (left) shows the resulting F'(v)) (full line), for e = 0.06 and Z.5f = 1,
together with the thermal Maxwellian distribution (dashed line) for illustration. The
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Figure 1: Left: Runaway probability R vs v, for v, =0, € = 0.04, and Z.;f = 1,3, 5, 10;
Right: Runaway probability contour map (e = 0.04; Z.fy = 1). The runaway separatrix
provided by the test particle description [1] (full line) is also included.

runaway plateau starts close to the critical velocity, v,., but the distribution separates
from the Maxwellian much before. Bottom Fig. 2 (left) shows 7' (v)) (normalized to the
bulk temperature), providing a local (in v)) measure of the perpendicular broadening
of the distribution due to pitch angle scattering. Although fast electrons are much less
collisional than thermal electrons, pitch angle scattering of fast electrons leads to a per-
pendicular temperature in the runaway region which is substantially larger than the bulk
temperature (7', > 1). Moreover, because of the perpendicular scattering, fast electrons
are continuously diffused into and scattered out the runaway plateau region. As a result,
even for v < v,, the distribution function is perpendicularly broadened and deviates
from a Maxwellian distribution (top figure). On the other hand, the height, F'(v)), of the
runaway plateau region significantly increases and, hence, the runaway production rate,
the increase resulting from the larger number of electrons with the enhanced 7', .

The solution to the steady-state one dimensional (integrated over the perpendicular
velocity) Fokker-Planck equation for runaway electrons allows to get an approximation
for the runaway production rate, A, as a function of 7' (v|). It can be shown [3]:
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The effect of the perpendicular broadening on the runaway production rate can then

be quantified by the ratio of the runaway production rate including the perpendicular
broadening of the distribution function [T’ (v)))] to the value estimated assuming 7', = 1
(Maxwellian distribution in perpendicular direction), illustrated in right Fig. 2. The
perpendicular broadening of the electron distribution increases the runaway production
by several orders of magnitude in comparison with the case of a perpendicular thermal
Maxwellian, the effect increasing with the plasma collisionality (larger Z.;; and lower €).
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Figure 2: Left: F(v)) (top) and 7' (v)) (bottom) for € = 0.06 and Z.;y = 1. The parallel
thermal Maxwellian distribution (dashed line; top) and the critical runaway velocity, v,
are also shown for illustration; Right: Ratio of the runaway production rate including
the perpendicular broadening of the distribution function [T’ (v))] to the value estimated
assuming 7'} =1 vs Z ¢ (full line: € = 0.04; dashed line: € = 0.08).

It is therefore worthwhile to remark the opposite effects on the runaway population
of the collisional dynamics in the parallel and perpendicular directions (to the toroidal
magnetic field). Parallel collisional friction balances the energy gain in the toroidal elec-
tric field, slowing down the electrons and reducing the runaway growth rate. In contrast,
perpendicular energy gain due to collisions reduces the electron energy losses,relaxing the
conditions for runaway. Moreover, because of the perpendicular scattering, fast electrons
are continuously diffused into the runaway plateau region which, as a result, enhances
the runaway production rate. It is well-known that a decrease of the electric field (€) or
an increase of Z sy, increasing the plasma collisionality and the parallel friction losses,
reduce the runaway production rate, but this reduction, because of the collisional perpen-
dicular dynamics, as illustrated in Fig 2 (right), is much smaller than would be expected
from the parallel electron dynamics only.
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