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Abstract. Wave overreflection - that is a shear flow non-normality induced phenomenon - often de-

termines the dynamics of flow systems. We proposed new route of the overreflection dynamics anal-

ysis on an example of incompressible MHD constant shear flow containing pseudo- and shear-Alfvén

waves (PAW and SAW): introduced separate/normal variables for each counter propagating wave (that is,

Elsässer variables in MHD flows) and, reduced the perturbation equations to two first-order ordinary dif-

ferential equations for each counter propagating wave. The proposed analysis allows us to separate from

each other basic physical processes, to follow their interplay and to gain new insights into the physics of

the overreflection. Specifically, our study grasps and describes intrinsic linear coupling of counter propa-

gating waves – the root of the overreflection. It is shown that: (1) PAW with long streamwise wavelength

exhibit stronger growth and become more balanced, (2) PAW and SAW branches are not coupled (in

the linear limit) with each other, (3) counter propagating SAW are coupled with each other, like counter

propagating PAW, (4) the growth and balance degree of SAW are small compared with those of PAW

waves. The proposed route is canonical/optimal and is easily applicable to widely discussed cases of

the overreflection of spiral-density waves in astrophysical discs and of internal-gravity waves in stably

stratified atmospheres.

Introduction. Nonuniform flows occur in atmospheres, solar wind, astrophysical disks, tokamak re-

actors, etc. Complex dynamics of these systems, in many respects, is determined by their nonuniform

kinematics. One of the basic manifestations of flow shear is wave overreflection phenomenon – sub-

stantial, self-consistent growth of counter-propagating wave perturbations – that occurs whenever flow

has significant shear. Our study, being along the lines of the breakthrough in the understanding of shear

flow non-normality induced phenomena performed by the hydrodynamic community in the 1990s (e.g.

see [1] and references therein), aims to provide new insight into the physics of the overreflection in 2D

incompressible MHD shear flow.

The overreflection phenomenon is usually analyzed on the basis of a linear, second-order ordinary

differential (wave) equation (e.g., see [2,3]). This approach describes both counter-propagating waves

by one variable and, consequently, possible dynamical processes between these waves (e.g., their cou-

pling) are in fact left out of consideration. We proposed other route of the overreflection investigation –

reduce the linear perturbation equations to the set of first-order differential equations for each compound

(counter propagating) wave using the nonmodal approach and Elsässer variables (that are normal vari-

ables in the shearless limit). The first-order equations separate from each other basic physical processes,
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make it possible to grasp new physical phenomena – linear coupling of counter propagating PAW – and

construct the dynamical picture of the interplay of the basic processes at overreflection. We described

in detail self-consistent transient growth of both counter-propagating waves when only one of them ex-

ists initially in the flow. The amplification of these (so-called, transmitted and reflected) waves, i.e. wave

overreflection phenomenon, is determined in many respects by the linear coupling of counter-propagating

waves, that is, by shear flow non-normality.

Physical model and equations. Consider a 2D ideal, incompressible MHD fluid flow with constant

shear of velocity, U0(Sy,0), and uniform magnetic field, B0 = (B0,0). The linear dynamic equations of

perturbations of the system have the form:

(∂t +Sy∂x)vx +Svy =−(1/ρ)∂x p , ∂xvx +∂yvy = 0 , ∂xbx +∂yby = 0 , (1)

(∂t +Sy∂x)vy =−(1/ρ)∂y p+(B0/4πρ)(∂xby−∂ybx) , (∂t +Sy∂x)by = B0∂xvy , (2)

where ρ – mean density; p, v and b – pressure, velocity and magnetic field perturbations.

This equations permit the decomposition of perturbed quantities into Kelvin waves, that is the same

as spatial Fourier harmonics (SFHs):

Ψ(x,y, t) = Ψ(kx,ky(t), t)exp[ikxx+ iky(t)y] , (3)

where Ψ = {p,v,b} and ky(t) = ky(0)−Skxt. Introducing non-dimensional variables: τ = St , v̂y =

vy/VA , b̂y = by/B0 (VA =
√

B2
0/4πρ – Alfvén velocity), the above system is easily reduced to:

dv̂y

dτ
= 2χp(τ)v̂y + iΩAb̂y ,

db̂y

dτ
= iΩAv̂y , χp(τ)≡ kxky(τ)

k2
x + k2

y(τ)
, ΩA ≡

kxVA

S
. (4)

The proposed route to the description of the overreflection is the following: generally, one have to

rewrite the dynamic equations in variables that are normal in the shearless limit. Fortunately, in the

considered MHD flow, the normal variables match with the Elsässer variables,

Z+
p = v̂y− b̂y , Z−p = v̂y + b̂y . (5)

Inserting the Elsässer variables into Eq. (4), we get:

dZ+
p

dτ
=−iΩAZ+

p + χp(τ)Z+
p + χp(τ)Z−p ,

dZ−p
dτ

= iΩAZ−p + χp(τ)Z−p + χp(τ)Z+
p . (6)

The dynamics of each of these SFHs is determined by the interplay of three different terms on the

right hand side. The second rhs terms of these equations relate to a mechanism of energy exchange

between the mean flow and the perturbations. The third rhs terms couple these equations, i.e., couple

the counter-propagating waves. χp is the time-dependent coupling coefficient of PAW and, in fact, its

value determines the strength of the overreflection. The energy density of a SFH (the sum of kinetic and

magnetic ones),

E(kx,ky(τ),τ) = 1/4ρV 2
A

(
1+ k2

y(τ)/k2
x
)(
|Z+

p |2 + |Z−p |2
)

= E+
p +E−p , (7)
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Figure 1: Time variations of: (a) amplitudes, |Z+
p | (solid) and |Z−p | (dashed), in log-linear scaling and

(b) instant frequencies, Ω+
p (solid) and Ω−

p (dashed), at Z+
p (0) = 1, Z−p (0) = 0, ky(0)/kx = 100 and

ΩA = 0.1.

is the sum of energies of the wave SFHs propagating along, E+
p , and opposite, E−p , the X-axis. We

introduce polar coordinates, Z±p (τ) = |Z±p (τ)|exp[−iϕ±p (τ)], and define the imbalance degree of the

counter-propagating SFHs, αp, and “instant frequency”, Ω±
p (τ):

αp = 1−
E−p
E+

p
= 1−

|Z−p |2
|Z+

p |2
, Ω±

p (τ) =
dϕ±p (τ)

dτ
. (8)

Numerical analysis and discussion. We analyze a case of initially unidirectional SFHs: Z−p (0) = 0.

The growth of the perturbations occurs just at ΩA < 1 and ky(0)/kx > 1. The intensity of the processes

increases with the decrease of ΩA and increase of ky(0)/kx. Therefore, we present the results of numer-

ical calculations at ΩA = 0.1;0.3;1 and ky(0)/kx = 100. Plotted on Fig.1a,b are the time variation of

amplitudes, |Z±p (τ)|, and “instant frequencies”, Ω±
p (τ). With the help of Eq. (6) and these figures one can

trace each stage of the formation of the counter-propagating wave, which represents the overreflection

phenomenon. Initially, as Z−p (0) = 0, only the last rhs term of right Eq. (6) is nonzero. So, the initial

amplification and the dynamics of Z−p (τ) is due to the third term χpZ+. Therefore, the positive “instant

frequency” of Z+
p results in the positive “instant frequency” of Z−p (see Fig.1b). The growth of |Z−p | is

rapid, but algebraic (nonexponential). In the course of evolution, |Z−p | becomes almost equal to |Z+
p | (see

Fig.1a), at the same time the influence of the first and second rhs terms of right Eq. (6) become appre-

ciable, behavior of ϕ−p and Ω−
p changes at around τ ≃ τ∗ ≡ ky(0)/kx = 100 with Ω−

p becoming negative

and as a result of all these Z−p is propagating opposite to Z+
p . With further increase of time, Ω−

p tends to

−ΩA and slightly varies around it. As for the dynamics of Z+
p , the coupling (the last rhs term of Eq. (6))

somewhat modifies its dynamics in the vicinity of τ ≃ τ∗, where Z−p is already large and χp is not small

too (while at τ ≫ τ∗, χp → 0).

Fig.2a shows that, starting with a purely unidirectional SFH, Z−p (0) = 0, the perturbation energy in-

creases and reaches a maximum value at time τ ≃ τ∗. After that, the SFH undergoes nearly periodic

and damping oscillations around some plateau value of the energy. This plateau value decreases with

increasing ΩA. Fig.2b shows that with time the imbalance degree of the SFH decreases, i.e., the energy
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Figure 2: Time variations of: (a) normalized energy of perturbation SFH, Ep(τ)/Ep(0), and (b) imbalance

degree of SFHs, αp, in log-linear scaling for the same parameters as in Fig.1, but for ΩA = 0.1 (solid),

ΩA = 0.3 (dashed) and ΩA = 1 (dotted).

propagating opposite to the X-axis tends to the energy propagating along the X-axis: for the case of

ΩA = 1, the SFH remains imbalanced, for the case of ΩA = 0.3 the imbalance degree tends to 0.05, and

for the case of ΩA = 0.1, in fact, the SFH becomes balanced with time. Because ΩA ≡ kxVA/S, it is clear

that SFHs having smaller kx (i.e., long streamwise wavelength) exhibit stronger growth and become more

balanced.

Generalization of this study to 3D case, where together with PAW, there also exist SAW in the flow,

is an easy task. Simple calculations show that equations describing the dynamics of SAW in Elsässer

variables are identical to Eq. (6), but with coupling coefficient equal to χs(τ) = kxkz/k2(τ), where kz

is the wavenumber along the third Z-axis and k2(τ) = k2
x + k2

y(τ) + k2
z . So, the dynamic equations of

the different branches are not couples, i.e., PAW and SAW are not coupled with each other. Due to the

change in the coupling coefficient, χs(τ), the growth of SAW is smaller and the degree of imbalance is

high compared with those in the case of PAW. This fact has direct consequence to nonlinear dynamics as

nonlinear processes are directly related to interactions between counter propagating waves: the intensity

of nonlinear interactions of the waves increases with the decrease of imbalance degree (αi parameter,

where i = p,s). Consequently, ceteris paribus, the intensity of nonlinear interaction of PAW should

prevail the intensity of SAW.
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