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Introduction. In recent years the physics of the interactions of dust grains with plasmas was 

studied intensively both experimentally and theoretically. However, most of theoretical 

studies assume that dust grain is made of homogeneous material and have spherical shape. 

Meanwhile in many cases (e.g. in fusion plasmas [1]) the material dust grain is made of can 

be inhomogeneous and the shape of the grain can be far from spherical. These features can 

significantly alter the very basic properties of grain-plasma interactions and result in new 

phenomena.  

For example, in Ref. 2, 3 it was demonstrated that the drag force imposed on the non-

spherical grain by plasma flow can have the components perpendicular to plasma velocity. It 

also was shown that dynamics of rotationally symmetric grain spinning is equivalent to the 

motion of symmetric top in the gravity field. As a result, the precession of the grain axis 

could result in significant oscillations of grain trajectory in the direction normal to plasma 

velocity. 

However, in Ref. 3 the effects of the magnetic field on grain dynamics were neglected. 

Meanwhile, even simple motion of charged non-spherical grain in magnetic field could 

result in torque, caused by the Lorenz force, acting on the grain. Moreover, grain-plasma 

interactions in the presence of magnetic field cause additional torques acting on the grain [4, 

5]. We also can envision that the effects of magnetic field can alter plasma-grain drug force 

direction and magnitude. As a result, the synergetic impact of the magnetic field effects and 

dust-grain interactions can have profound impact on grain dynamics. Here we address some 

of the issues related to the dynamics of non-spherical dust grain in plasma embedded into 

magnetic field.  

 

Equations. To describe dynamics of dust grain, which we consider as a rigid body, we need 

to provide forces,   

€ 

 
F , and torques,   

€ 

 
K . Both forces and torques depend on the shape of the 

grain, plasma scalar parameters (e.g. density, temperatures, etc.) and such vectors as grain, 

  

€ 

 
V , and plasma,   

€ 

 
V p, velocities and magnetic,   

€ 

 
B , and electric,   

€ 

 
E , fields, and angular velocity 

of the grain,   

€ 

 
Ω . In general case forces and torques can only be found numerically. However, 
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in Ref. 3 it was shown that the structure of the expressions for forces and torques could be 

determined from symmetry arguments. In particular, for rotationally symmetric grains it was 

possible to determine exact expressions for forces and torques. The main argument used in 

Ref.32 was the following. The expressions for force and torque can be expressed as follows 

€ 

Fα =Φαβ
(W)Wβ +Φαβ

(Ω)Ωβ,       (1) 

€ 

Kα = Tαβ
(W)Wβ + Tαβ

(Ω)Ωβ ,       (2) 

where   

€ 

 
W =

 
V p −

 
V , 

€ 

Φαβ and 

€ 

Tαβ  are some second-order tensors depending on the shape of 

the grain. Spatial orientation of rotationally symmetric grain can be characterized by unit 

vector , which is directed along symmetry axis. As a result, tensors 

€ 

Φαβ and 

€ 

Tαβ  can be 

expressed in terms of tensors 

€ 

δαβ, 

€ 

DαDβ, and pseudo-tensor 

€ 

εαβγDγ , where  is the 

Kronecker delta and 

€ 

εαβγ  is the Levi-Civita symbol. Then, taking into account that   

€ 

 
F ,   

€ 

 
W , 

and   

€ 

 
D  are the vectors, while   

€ 

 
K  and   

€ 

 
Ω  are pseudo-vectors, one finds the following 

expressions  

  

€ 

 
F =Φ1

(W)  W +Φ2
(W)  D 

 
D ⋅
 

W ( ) +Φ(Ω)  Ω ×
 
D ( ) ,     (3) 

  

€ 

 
K = T(W)  W ×

 
D ( ) + T1

(Ω)  Ω + T2
(Ω)  D 

 
D ⋅
 
Ω ( ) ,     (4) 

where the magnitudes of the scalars 

€ 

Φ1
(W) , 

€ 

Φ2
(W), 

€ 

T1
(Ω), 

€ 

T2
(Ω), 

€ 

Φ(Ω), and 

€ 

T(W)  can be 

evaluated from simple physical considerations [3]. 

 In the presence of magnetic field, we still can use the same symmetry arguments, but 

now we need to take into account that   

€ 

 
F  and   

€ 

 
K  depend on pseudo-vector   

€ 

 
B  (for simplicity 

we neglect an impact of electric field and assume   

€ 

 
V p = 0).  

  

€ 

 
F =Φ1

 
V +Φ2

 
D 
 
D ⋅
 
V ( ) +Φ3

 
Ω ×
 
D ( ) +Φ4

 
V ×
 
B ( ) +Φ5

 
V ×
 
D ( )
 
D ⋅
 
B ( )

+Φ6
 
Ω 
 
D ⋅
 
B ( ) +Φ7

 
B 
 
D ⋅
 
Ω ( ) +Φ8

 
D 
 
B ⋅
 
Ω ( )

, (5) 

  

€ 

 
K = T1

 
V ×
 
D ( ) + T2

 
Ω + T3

 
D 
 
D ⋅
 
Ω ( ) + T4

 
Ω ×
 
B ( ) + T5

 
Ω ×
 
D ( )
 
D ⋅
 
B ( )

+ T6
 
V 
 
D ⋅
 
B ( ) + T7

 
B 
 
D ⋅
 
V ( ) + T8

 
D 
 
B ⋅
 
V ( ) + T9

 
B + T10

 
D 
 
D ⋅
 
B ( )

,  (6) 

where scalars 

€ 

Φ... and 

€ 

T... can be found numerically or estimated analytically. 

 Although Eq. (5, 6) are more cumbersome than Eq. (3, 4) the physical meaning of 

different terms can be easily interpreted. For example, the terms from 

€ 

T5 to

€ 

T8  describe, in 

particular, the torque,   

€ 

 
T L , related to the Lorenz force, acting on the grain charge: 
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€ 

 
T L α

=
1
c
 r ×
 
V ×
 
B +

 
Ω ×
 r ( ) ×
 
B [ ]{ }∫

α
dq =

1
c
 
D q ×

 
V ×
 
B ( ){ }

α
+

1
c
εαβγΩβQγδBδ , (7) 

where dq is the differencial charge and an integration goes over entire grain;   

€ 

 
D q =

 r dq∫  and 

€ 

Qαβ = rαrβdq∫  are dipole and quadrupole components of charge distribution in the grain 

counted in the center of mass frame. For a grain with rotational symmetry we have   

€ 

 
D q ∝

 
D  

and 

€ 

Qαβ =Q1δαβ +Q2DαDβ , where 

€ 

Q1 ~ Q2 ~ eZdRd
2, 

€ 

Zd  is the grain charge number and 

€ 

Rd is the grain size. The terms with 

€ 

T9 and 

€ 

T10 can describe the torques, 

€ 

TB, which are due 

to gyro-motion of ions impinging the grain and, also, due to   

€ 

 
j ×
 
B  force caused by electric 

current which can flow through the grain due to the differences in electron and ion gyro-

motion and, correspondingly, in their collection by the grain [4]. For the case where ion 

gyro-radius, 

€ 

ρi, is larger than 

€ 

Rd the estimates give 

€ 

T9 ~ T10 ~ nTRd
4 /Bρi, where n and T 

are the plasma density and temperature [4]. Assuming that 

€ 

e2Zd ~ RdT and comparing the 

magnitude of 

€ 

TB and 

€ 

TL  we find the 

€ 

TL  dominates for relatively small grains 

 

€ 

Rd <ΩλD
2 /Vi,        (8) 

where 

€ 

Vi is the ion thermal speed and 

€ 

λD is the Debye length. 

 

Dynamics of large grain spinning in magnetic field. Here we consider the dynamics of 

spinning of relatively large rotationally symmetric grain where the torque is determined by 

ion gyro-motion. In this case we have the following equations 

 
  

€ 

d
 

M 
dt

= T9
 
B + T10

 
D 
 
D ⋅
 
B ( ) ,  

  

€ 

d
 
D 

dt
=
 
Ω ×
 
D ,    (9) 

where   

€ 

 
M = I0

 
Ω + I1

 
D 
 
D ⋅
 
Ω ( ) is the angular momentum, 

€ 

I0  and 

€ 

I1 describe the inertial 

moments of the rotationally symmetric grain. Introducing   

€ 

 
ω =
 
M /I0 ,   

€ 

 
b =
 
B /B, 

€ 

τ1 = T9B/I0, 

and 

€ 

τ2 = T10B/I0  we re-write (9) as follows 

 
  

€ 

d
 
ω 

dt
= τ1
 
b + τ2

 
D 
 
D ⋅
 
b ( ) ,  

  

€ 

d
 
D 

dt
=
 
ω ×
 
D .    (10) 

Although   

€ 

 
ω  is increasing with time, Eq. (10) has two dynamic equilibrium   

€ 

 
ω =
 
ω 0(t)  and 

  

€ 

 
D =
 
D 0: (A) where all vectors are parallel,   

€ 

 
ω 0 ||

 
b ||
 
D 0, and (B) where   

€ 

 
ω 0 ||

 
b ⊥
 
D 0. In what 

follows we consider the stability of these equilibria by introducing small perturbations   

€ 

 
ω 1 

and   

€ 

 
D 1 (we should keep in mind that   

€ 

|
 
D |=1).  
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 We start with the case (A). Here we have only   

€ 

 
ω 1⊥
 
b  and after some algebra from 

Eq. (10) we find equation for   

€ 

 
ω 1: 

 
  

€ 

d2  ω 1
dt2 = τ2

 
ω 1 ×

 
b −ω0(t) d

 
ω 1
dt

×
 
b ,  

€ 

dω0
dt

= τ1 + τ2.  (11) 

Looking for the solution   

€ 

 
ω 1 ∝ exp(S(t)) , where 

€ 

|S(t) |>>1 we find 

 
  

€ 

 
ω 1 ∝ exp ±i ω0( ʹ′ t t

∫ )d ʹ′ t { } / |ω0(t) |(τ1+τ2) /(τ1+2τ2) ,    (12) 

which shows that dynamic equilibrium (A) is unstable for 

€ 

−2 < τ2 /τ1 < −1. 

 For the case (B) we introduce the component of the vector   

€ 

 
D 1 parallel to the 

magnetic field, 

€ 

D||, and after some algebra from Eq. (10) we find 

 

€ 

d3D||
dt3

= τ2ω0D|| −ω0
2 dD||
dt

,  

€ 

dω0
dt

= τ1.    (13) 

Looking for the solution 

€ 

D|| ∝ exp(S(t)) , where 

€ 

|S(t) |>>1 we find 

 

€ 

D|| ∝ exp ±i ω0( ʹ′ t t
∫ )d ʹ′ t { } / |ω0(t) |τ2 /2τ0 ,     (14) 

which shows that dynamic equilibrium (B) is unstable for 

€ 

τ2 /τ1 < 0. 

 Thus we see that for the case of negative ratio 

€ 

τ2 /τ1 both dynamic equilibria (A) and 

(B) can be unstable. From geometric consideration of the torque related to gyro-motion of 

ions such case can correspond, for example, to oblate spheroid.  

 

Conclusions. By using symmetry arguments we derive expressions for force and torque 

acting on rotational symmetric grain in plasma embedded into magnetic field. We analyze 

spinning of rotationally symmetric grain due to torque caused by gyro-motion of ions 

impinging the grain. We show that for some cases (e.g. oblate spheroid) there is no stable 

dynamic equilibrium of grain motion. 
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