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Because of their fully three-dimensional nature, stellarator equilibria are inherently
more complex than tokamak equilibria. In general, they have to be calculated numerically, with
computer-intensive solvers. In this paper, we perform an asymptotic analysis based on the
smallness of the poloidal magnetic fields compared to the dominant toroidal field in order to
simplify the MHD equilibrium equations in stellarators. Our aim is two-fold: 1) accelerate the
numerical computation of 3D equilibria; 2) obtain more physical insights into the properties
of stellarator equilibria. Our asymptotic analysis generalizes a similar analysis by Greene and
Johnson [1] (denoted by GJ) to regimes of interest for modern stellarator experiments such as

W7-X, LHD, and HSX.

I. The new stellarator expansion

The stellarator equilibria we consider here have a large toroidal magnetic field B , small

helical and axisymmetric poloidal magnetic fields Bp, and a small plasma pressure p. We

perform an asymptotic analysis of the ideal MHD equilibrium equations relying on the small

parameter 6 = ‘Bp‘/Bé. The ordering of the different physical quantities entering in the

problem in terms of ¢ is given in Table 1, and is compared to the GJ ordering [1] . In Table 1,
a is the average minor radius, and R is the average major radius. In order to produce a
stellarator with a non-planar magnetic axis it is crucial to assume N ~ 1, which is the

ordering used in the general analysis presented here. This is in contrast to the GJ ordering

which assumes that N ~ 1 /¢ is large.
At first glance reducing N from order 1/ to order 1 might seem to be more restrictive.

In fact, the non-planar analysis is far more complicated and much less restrictive. It allows for
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a finite non-planar magnetic axis, finite helical modulations of the flux surfaces, and brings

toroidal effects into the calculation earlier, in the same order as helical effects.

Parameter Symbol | New non-planar scaling | GJ scaling
Plasma beta B~ B ) 5
Inverse aspect ratio e=a/R ) 8
Number of helical periods N, 1 1/6°
Poloidal helicity l 1 1
Rotational transform L/ 2m 1 1

Table 1. The non-planar stellarator ordering

Expanding the ideal MHD equilibrium equations to first order in 6 with the ordering
given in Table 1, we have shown [2] that the (approximate) stellarator equilibrium model is

given by the following set of two coupled equations:
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In these equations, the coordinate system is (u, 9,(), which is defined as follows:
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where (R, qb,Z) is the usual cylindrical coordinate system associated with a toroidal geometry
(i.e. for a tokamak, ¢ would be the ignorable coordinate). Also 3 = QMOpl/Bj is the
normalized first order pressure (in our ordering, there is no zeroth order pressure), 4 is a
stream function for the poloidal magnetic field, and M(C) represents the modulation of the
toroidal field due to the /= 0 mirror field. Specifically, the zeroth order toroidal field is

B, (r,0,¢) = B, (¢) = B M(C), with the average value of } satisfying <M> =1and B, the

average toroidal field to lowest order. Once Eg. (1) is solved for the unknown 3 and A , the

magnetic field and the current density are easily calculated using the following formulas:
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In general, the coupled equations given in Eq. (1) have to be solved numerically.

However, we now present semi-analytical solutions to Eq. (1) for vacuum flux surfaces.
I1. Vacuum flux surfaces

By vacuum flux surfaces, we mean that 5 =0, and the solution to the second
equation in Eq. (1) is ViA1 = 0. Indeed, this means J = 0 according to Eq. (3), as expected.

In the following, we assume that we know the shapes and currents in the stellarator coils. The

boundary conditions for A are therefore known, so we can solve Laplace’s equation for A .
Thus, A is considered to be a known function. Now, since 3, is only a function of the

toroidal flux ¢ (u,0,¢), when 3 — 0 the first equation in Eq. (1) should be understood as an

equation for v :

0 :
8—<+e<><VLA-VL]¢:0 with A =-A /eN, (@))

With A known, Eq. (4) is an advection equation. One might at first think that it can
easily be solved using the method of characteristics. The reason this is not so is that in order
to follow ¢ along the characteristic curves, one first needs to know the initial conditions for
1, for instance at the initial angle ¢ = 0. Finding the appropriate initial conditions such that
1 is single-valued and 2r-periodic in the angle ¢ is a very complicated matter.

The approach that we follow instead is to consider magnetic configurations in which

the vector potential A has a dominant [ = 2,n = 1 harmonic, and can be written as follows:

c a i i
A = au’cos(20 + ) + Z%ule”‘gﬂ"C (5)
In

Here, the sum over all I,n excludes the [ =2n =1and the [ =—2n = —1 which are

accounted for in the first term, and [ =0, all n, since these contributions appear in the
modulation coefficient M . It also excludes [ = +1, all n. The [ = +1 fields produce a finite

non-planar magnetic axis and are accounted for by a change of coordinate systems [2]. For
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our analysis we assume that ‘O‘z.n‘ /a <1 forall [,n, and we construct the solution for the

unknown flux function by writing an expansion for ) :

2

¢=%+2A+¢1+w2+¢3+... (6)

The first term represents the normalized flux due to the toroidal field. The second term
includes the known contributions due to the dominant [ =2 field plus all non-zero
harmonics. Their sum would be an exact solution to Eq. (4) if only the [ = 2 harmonic was

non-zero. The remaining terms in Eq. (6) are the expansion corrections, which are treated as
2
small:ep, / A ~ ‘al_n‘/a, Y, [ A~ (‘am‘/a) , etc... Inserting this ¢ expansion into Eq. (4),

we can calculate the corrections ). order by order. At each order, ¢, is determined to within
a free constant, which we choose such that ¢ is 2r-periodic in ¢ . With this method, we have

been able to obtain analytic expressions for ¢, and ¢, [2], which we can use to analyze

vacuum flux surfaces for a variety of configurations (as in Figure 1 for instance).
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Figure 1. Flux surfaces foran [ = 1,2,3,4;n = 1 vacuum field in the dominant harmonic expansion. The two

cross-sections showed correspond to the angles ¢ = 0 and ( = 7. |am|/a = 0.1 for all harmonics.

In future work we will apply the analytic solutions to actual stellarator experiments,
including LHD, W7-X, and HSX. We will also develop an "exact" numerical code to solve

Eq. (4) , whose solutions can then be compared to full 3-D MHD codes such as VMEC.
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