
Asymptotic expansion for stellarator equilibria  

with a non-planar magnetic axis 

 

A.J. Cerfon1, F.I. Parra2 and J.P. Freidberg1
 

1Plasma Science and Fusion Center, MIT, Cambridge MA 02139, USA 

2Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK 

 

 Because of their fully three-dimensional nature, stellarator equilibria are inherently 

more complex than tokamak equilibria. In general, they have to be calculated numerically, with 

computer-intensive solvers. In this paper, we perform an asymptotic analysis based on the 

smallness of the poloidal magnetic fields compared to the dominant toroidal field in order to 

simplify the MHD equilibrium equations in stellarators. Our aim is two-fold: 1) accelerate the 

numerical computation of  3D equilibria; 2) obtain more physical insights into the properties 

of stellarator equilibria. Our asymptotic analysis generalizes a similar analysis by Greene and 

Johnson [1] (denoted by GJ) to regimes of interest for modern stellarator experiments such as 

W7-X, LHD, and HSX. 

 

I. The new stellarator expansion 

The stellarator equilibria we consider here have a large toroidal magnetic field 
  
B , small 

helical and axisymmetric poloidal magnetic fields 
  
B

p
, and a small plasma pressure p . We 

perform an asymptotic analysis of the ideal MHD equilibrium equations relying on the small 

parameter 
     

B
p

/ B . The ordering of the different physical quantities entering in the 

problem in terms of  is given in Table 1, and is compared to the GJ ordering [1] . In Table 1, 

 a  is the average minor radius, and 
  
R

0
 is the average major radius. In order to produce a 

stellarator with a non-planar magnetic axis it is crucial to assume    N 1 , which is the 

ordering used in the general analysis presented here. This is in contrast to the GJ ordering 

which assumes that     N 1/  is large.  

At first glance reducing  N  from order   1/  to order 1 might seem to be more restrictive. 

In fact, the non-planar analysis is far more complicated and much less restrictive. It allows for 
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a finite non-planar magnetic axis, finite helical modulations of the flux surfaces, and brings 

toroidal effects into the calculation earlier, in the same order as helical effects. 

Parameter Symbol New non-planar scaling GJ scaling 

Plasma beta 
toroidal

    
2
 

Inverse aspect ratio     
a / R

0
  

2
 

Number of helical periods 
  
N

0
 1  1/ 2  

Poloidal helicity l  1  1  

Rotational transform   / 2  1  1  

 

Table 1. The non-planar stellarator ordering 

Expanding the ideal MHD equilibrium equations to first order in  with the ordering 

given in Table 1, we have shown [2] that the (approximate) stellarator equilibrium model is 

given by the following set of two coupled equations: 

 

     

N
0

e A
1
·

1
= 0

N
0

e A
1
· 2

A
1

=

M
3/2 1

·e
Z

 (1) 

In these equations, the coordinate system is 
    
u, ,( ) , which is defined as follows: 

 

    

u = M( )
1/2

r =
1

a
M( )

1/2

R R
0( )

2

+ Z
2

1/2

,  = tan 1 Z

R R
0

,   = N
0

 (2) 

where 
    
R, ,Z( )  is the usual cylindrical coordinate system associated with a toroidal geometry 

(i.e. for a tokamak,  would be the ignorable coordinate). Also 
    1

= 2μ
0
p

1
/ B

0

2
 is the 

normalized first order pressure (in our ordering, there is no zeroth order pressure), 
  
A

1
 is a 

stream function for the poloidal magnetic field, and 
   
M ( )  represents the modulation of the 

toroidal field due to the    l = 0  mirror field. Specifically, the zeroth order toroidal field is 

    
B

0
(r, , ) = B

0
( ) = B

0
M( ), with the average value of M satisfying 

   
M = 1  and 

  
B

0
 the 

average toroidal field to lowest order. Once Eq. (1) is solved for the unknown 
1
 and A

1
, the 

magnetic field and the current density are easily calculated using the following formulas: 
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B

B
0

= M 1
M

1/2
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2M
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1/2
A

1
e

N
0

2M 1/2

dM

d
u e

r

μ
0
aJ

1

B
0

= e M
2
A

1

1

2M 1/2 1
e

 (3) 

 In general, the coupled equations given in Eq. (1) have to be solved numerically. 

However, we now present semi-analytical solutions to Eq. (1) for vacuum flux surfaces. 

II. Vacuum flux surfaces 

 By vacuum flux surfaces, we mean that 
   1

= 0 , and the solution to the second 

equation in Eq. (1) is 
   

2
A

1
= 0 . Indeed, this means 

   
J

1
= 0  according to Eq. (3), as expected. 

In the following, we assume that we know the shapes and currents in the stellarator coils. The 

boundary conditions for 
  
A

1
 are therefore known, so we can solve Laplace’s equation for 

  
A

1
. 

Thus, A
1
 is considered to be a known function. Now, since 

1
 is only a function of the 

toroidal flux    (u, , ) , when 
   1

0  the first equation in Eq. (1) should be understood as an 

equation for 
 

: 

 

     

+ e A = 0    with    A = -A
1
/ N

0
 (4) 

With 
  
A

1
 known, Eq. (4) is an advection equation. One might at first think that it can 

easily be solved using the method of characteristics. The reason this is not so is that in order 

to follow 
 

 along the characteristic curves, one first needs to know the initial conditions for 

 
, for instance at the initial angle 

   
= 0 . Finding the appropriate initial conditions such that 

 
 is single-valued and 2 -periodic in the angle 

 
 is a very complicated matter.  

The approach that we follow instead is to consider magnetic configurations in which 

the vector potential A  has a dominant l = 2,n = 1  harmonic, and can be written as follows:

 

    

A = u
2 cos(2 + )+

l ,n

2l ,n

u
l

e
il +in  (5) 

Here, the sum over all 
  
l,n  excludes the    l = 2,n = 1and the    l = 2,n = 1  which are 

accounted for in the first term, and    l = 0 , all n , since these contributions appear in the 

modulation coefficient  M . It also excludes    l = ±1 , all  n . The    l = ±1  fields produce a finite 

non-planar magnetic axis and are accounted for by a change of coordinate systems [2]. For 

38th EPS Conference on Plasma Physics (2011) P1.081



our analysis we assume that 
    l ,n

/ < 1  for all 
  
l,n , and we construct the solution for the 

unknown flux function by writing an expansion for 
 

: 

 
     

=
u

2

2
+ 2A +

1
+

2
+

3
+…  (6) 

The first term represents the normalized flux due to the toroidal field. The second term 

includes the known contributions due to the dominant    l = 2  field plus all non-zero 

harmonics. Their sum would be an exact solution to Eq. (4) if only the l = 2  harmonic was 

non-zero. The remaining terms in Eq. (6) are the expansion corrections, which are treated as 

small:
    1

/ A
l ,n

/ , 
2
/A

l ,n
/( )

2

, etc... Inserting this  expansion into Eq. (4), 

we can calculate the corrections 
  i

 order by order. At each order, 
  i

 is determined to within 

a free constant, which we choose such that 
 

 is 2 -periodic in 
 

. With this method, we have 

been able to obtain analytic expressions for 
  1

 and 
  2

 [2], which we can use to analyze 

vacuum flux surfaces for a variety of configurations (as in Figure 1 for instance). 

      
Figure 1. Flux surfaces for an 1, 2, 3, 4; 1l n= =  vacuum field in the dominant harmonic expansion. The two 

cross-sections showed correspond to the angles 0=  and = .
,
/ 0.1

l n
=  for all harmonics. 

In future work we will apply the analytic solutions to actual stellarator experiments, 

including LHD, W7-X, and HSX. We will also develop an "exact" numerical code to solve 

Eq. (4) , whose solutions can then be compared to full 3-D MHD codes such as VMEC. 
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