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In the past decade, Geodesic Acoustic Modes (GAM) predicted in a theoretical magneto- 

hydrodynamic (MHD) analysis [1] have attracted  great interest due to its relevant role on the 

H-mode and transport barrier formation to suppress plasma turbulence. The existence of 

GAMs with M= 1, N=0 poloidal/toroidal mode numbers was experimentally confirmed [2,3] 

and many theoretical and numerical investigations are currently being pursued to further 

understand the characteristics of these mode [4-6]. The formation of the H-mode usually 

occurs during neutral beam or ion cyclotron resonance heating, which are accompanied by 

poloidal and (or) toroidal rotation of the plasma column [3]. In a non-rotating plasma, the 

GAM frequency is )/1( 222 qΓsGAM +=ωω  where )/( 2
0

2 RPs ργω = , q= rhζ / hθ R0 is safety factor, 

P is plasma pressure, ρ is the mass density, γ is the adiabatic index, R0 is the tokamak major 

radius, Γ=2 in MHD, and Γ=7/2 in kinetic approaches [6]. The oscillations are electrostatic, 

which depend on the parallel (h⋅V) and binormal (h×er)⋅V velocities where h=B/B unit vector 

of the magnetic field and er is radial unit vector, and they have poloidally symmetric radial 

electric field Er. The equilibrium and oscillating field quantities are assumed to be 

axisymmetric and independent of the toroidal angle ζ . These oscillations do not perturb the 

magnetic surfaces (δB=0), which are assumed to be circular and concentric with the set of the 

coordinates (R=R0+r cosθ, z= r sinθ, ζ) where r is the plasma surface radius. The zonal flow 

(ZF) branch 
2
0

242 /)1( RcV sZF −≈ γω  is found in static equilibrium [4] with the isothermal 

plasma surfaces (peq ~ρeq) and toroidal rotation. An ion-sound branch of GAMs may appear in 

kinetic approach [6] or in plasmas with poloidal rotation [5], 
222

pol
22

2GAM /)/31( qcV ss +≈ ωω .   

Here we study modifications of the GAM continuum for different combination of the 

toroidal and poloidal rotation in plasmas with the isothermal magnetic surfaces using standard 

MHD approach. The effect of plasma rotation on electrostatic GAM modes is investigated for 

large aspect ratio tokamaks (ε=r/R0<<1), taking into account the heat flux. In addition to the 

standard ideal MHD equations [1-5], we take into account the heat balance equation  

( ) Q∇=− Pdt
dP lnln2

3 γρ ,  ][2
5 22

TiTi
ci

vv ∇×≈ hQ ω
ρ                                  (1) 

Due to heat flux, we will show that three geodesic modes (ωGAM1,2 and ωZF) appear in the 
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toroidally and poloidally rotating plasmas. As well, we use reduced Ohm’s law 

0=∇−−+ ρωθζζθ cirr PBBVBVcE .                                                                (2) 

The MHD quantities are represented as a sum of time independent equilibrium and perturbed 

values, P=peq+p0
p~ exp(iωt), ρ=ρeq+ρ0

ρ~ exp(iωt), V=u+v⋅exp(iωt), J= Jeq + j⋅exp(iωt). The 

simplified equilibrium found for rotating plasmas in [5] is adapted to isothermal concentric 

magnetic surfaces, peq~ ρeq=ρ0 (1+ερ1 cosθ). Then, using the first order ε-corrections in the 

continuity equation, we obtain the poloidal velocity modulation up =u0[1- ε (1+ρ1) cosθ ].  

Next, we specify the toroidal rotation ut =U+ [εU - u0q(2+ρ1)]cosθ  to equilibrate the poloidal 

velocity  modulation due to the condition of constant electric field over the magnetic surfaces 

in eq.(2). Finally, taking the scalar and vector products of momentum equation with h, we get 

the radial and poloidal equilibrium conditions, which are valid for low β-plasmas,  

JθB≈∇r peq,     ( )( ) 1222
1 122

−−+−= pttpp MMMMM γγρ                           

where 1/),/( 222222
0

2 <<== stsp cUMhcuM θ  are the poloidal and toroidal Mach numbers and 

ργ /2 Pcs = . For perturbations, we expand the set of oscillating amplitudes { ρ~,, ||vp } in 

Fourier series over poloidal angle, as for density ( )θρθρρρρ sincos~~
00 sc ++= , where the 

first harmonic is only taken into account. Next, using the vector and scalar products of 

momentum equation with the h-vector in perturbative analyses of MHD equations, we obtain 

the set of equations for the pressure, density, and parallel velocity oscillations 

( ) ( ) Ω−−Ω−−Ω+= c
pd

s

bc
pss MMc

vhqpMp ργργγρ ζ 1i1ii 1                        (3a) 

( ) Ω−+Ω−= s
pd

s
pcc MMpMp ργγρ 1ii                                                            (3b) 

spsscs Mcvc ρρ +=Ωi                                                                                             (3c) 

cpscbMss Mcvvqc ρρ −−−=Ω 2i                                                                            (3d) 

( ) γ/2i cscpbtpMs pcvMvqMMqv −−−=Ω                                                          (3e) 

γ/i ssspc pcvMv +=Ω                                                                                           (3f)                

where ( )[ ]( ) 122 12/1
−−−+= ptptM MMMMqq γγ , Ω= ωR0q/cs, is the normalized frequency, 

0

~
BEcv rb −= , and ( ) 1

11 2)/11( −+−= ρργdM  is the parameter responsible for the heat flux 

effect where the approximation |hζ |≈1 is used. Further, to get the geodesic continuum 

frequency we employ the current continuity equation for the perturbed current ∇⋅j⊥=0 where 
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only cosθ -pressure perturbations may contribute due to the standard averaging procedure 

over the magnetic surfaces used to evaluate geodesic modes 
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Here, the averaged current may be presented via radial component of the dielectric 

tensor rr Ej 0ε4
i

π
ω−>=< . Finally, using combinations of eq. (3a-3f), we calculate the 

perturbed pressure, density, and velocity, which are introduced into eq. (4) to obtain the 

geodesic continuum equation through the radial tensor component 
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where iiA nmBc π4= is Alfvén velocity and terms in numerator are 
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Exact expressions in above equation are very complicated and we present them in an 

approximated form. The expressions for the geodesic modes are found from the numerator 

roots. Keeping terms of the order of 1ρ  in the numerator of eq.(5), we use the equation N=0 to 

obtain two high order roots 2
2,1Ω , which correspond to the GAM1,2 branches 

( ) ( )[ ] 2
0

22224222
GAM1 114421212 RcMMqMMqqq stptp −−++−++=ω  .           (6a) 

( )[ ] 2
0

2

2
222

GAM2 4231
Rq

cMMMq s
tpp −−+=ω  .                                                          (6b) 

These geodesic modes have been also obtained in Ref 5 and first GAM branch for Mp=0 in 

eq.(6a) exactly coincides with the one presented in Ref 4. In the denominator, ignoring 

corrections of )( 4
1ρδ OD ≈ , we found ( ) ( ) )(11 4

1
22

2,1 ρOMMMM dpppd +±±=Ω m ,  

( ) )(1 4
1

222
3 ρOMM dpd +−=Ω . Here, we note that the sound branch in eq.(6b) written in the 

dimensionless form  tpp MMMq 4)/23(1 222
2 −−+≈Ω  stays in the frequency band between 

the denominator roots 22
12 21 pd M±≈Ω in eq. (7). It means that the branch disappears in the 

limit Mp→0 due to the factors (Ω±1), which are divided out in the fraction of eq. (5).  
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Most interesting is the third new ZF root of equation N+δN=0 in the numerator of eq.(5) 
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that is only depend on poloidal/toroidal circulation frequency and it has the frequency, which 

is small in comparison with the geodesic ones in eq.(6a,b). The mode frequency stays at the 

poloidal circulation frequency ru /0 when toroidal rotation 224 ~ tpt MMM << is not yet too 

small. The mode disappears in the formal limit 02 =tM when the factors ( )[ ]222 1 dp MM −−Ω  

are divided out in the fraction of eq (5). In the case of preferentially toroidal rotation 

24
pt MM >> in eq.(9), we have result of Ref 4.  

        It is very important to take into account the Alfvén wave continuum (AWC) to verify 

transitions of the continuum branches and to know where continuum extremum will occur 

because the real eigenmodes may only propagate at the maximum or minimum of the 

continuum [6]. In a quasi-cylindrical approach, the AWC equation may be written in the form:  
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Therefore, there is intersection of GAM’s 

with the Alfvén continuum at the rational 

magnetic surfaces q=m/n. To show 

transitions between the continuum 

branches, the squared frequency of the 

continuum is plotted schematically in Fig.1 

as a function of q at the rational surface 

defined by m=3, n=2 poloidal /toroidal 

mode numbers. Typical tokamak plasma 

parameters r=0.1R0, (cA/cs) =10,  and c/cA= 

100 are chosen for the preferentially 

poloidal (Mp=0.5, Mt=0.05 ) or for preferentially toroidal (Mp=0.05 , Mt=0.5 ) rotation.            
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