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In the past decade, Geodesic Acoustic Modes (GAM) predicted in a theoretical magneto-
hydrodynamic (MHD) analysis [1] have attracted great interest due to its relevant role on the
H-mode and transport barrier formation to suppress plasma turbulence. The existence of
GAMs with M= 1, N=0 poloidal/toroidal mode numbers was experimentally confirmed [2,3]
and many theoretical and numerical investigations are currently being pursued to further
understand the characteristics of these mode [4-6]. The formation of the H-mode usually
occurs during neutral beam or ion cyclotron resonance heating, which are accompanied by
poloidal and (or) toroidal rotation of the plasma column [3]. In a non-rotating plasma, the
GAM frequency is Ogpy = 0 (I +1/4*) where @) = ¥PI(PR;) q=rh:/hgRy is safety factor,
P is plasma pressure, o is the mass density, yis the adiabatic index, Ry is the tokamak major
radius, /=2 in MHD, and 7'=7/2 in kinetic approaches [6]. The oscillations are electrostatic,
which depend on the parallel (h-V) and binormal (hxe,)-V velocities where h=B/B unit vector
of the magnetic field and e, is radial unit vector, and they have poloidally symmetric radial
electric field E,. The equilibrium and oscillating field quantities are assumed to be
axisymmetric and independent of the toroidal angle { . These oscillations do not perturb the
magnetic surfaces (0B=0), which are assumed to be circular and concentric with the set of the

coordinates (R=Ry+r cos, z= r sin6, {) where r is the plasma surface radius. The zonal flow

(ZF) branch @z =(¥=DV*/cIR; is found in static equilibrium [4] with the isothermal

plasma surfaces (peq ~0eq) and toroidal rotation. An ion-sound branch of GAMs may appear in

kinetic approach [6] or in plasmas with poloidal rotation [5], Oz = @, (1+ 3Vpil Iehlq,
Here we study modifications of the GAM continuum for different combination of the
toroidal and poloidal rotation in plasmas with the isothermal magnetic surfaces using standard
MHD approach. The effect of plasma rotation on electrostatic GAM modes is investigated for
large aspect ratio tokamaks (e=r/Ry<<1), taking into account the heat flux. In addition to the

standard ideal MHD equations [1-5], we take into account the heat balance equation

324/ (np” ~InP)=VQ, Q=345 vilhxVii) (1)

Due to heat flux, we will show that three geodesic modes (@gami2 and @yzr) appear in the
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toroidally and poloidally rotating plasmas. As well, we use reduced Ohm’s law

cE, +V,B, —VIBH—BV,,P/Q)C[,O:O. (2)

The MHD quantities are represented as a sum of time independent equilibrium and perturbed
values, P:peq+p0ﬁ exp(iax), ,0=,06q+,00:5 exp(iax), V=u+v-exp(iax), J= Joq + j-exp(iax). The
simplified equilibrium found for rotating plasmas in [5] is adapted to isothermal concentric
magnetic surfaces, pe,~ Peqg=00 (1+£0; cos@). Then, using the first order &-corrections in the
continuity equation, we obtain the poloidal velocity modulation u, =ug[1- & (1+p;) cos@ ].
Next, we specify the toroidal rotation u, =U+ [€U - upq(2+p0;)]cos@ to equilibrate the poloidal
velocity modulation due to the condition of constant electric field over the magnetic surfaces
in eq.(2). Finally, taking the scalar and vector products of momentum equation with h, we get

the radial and poloidal equilibrium conditions, which are valid for low f-plasmas,

JBNV,pey  py=y(2M>—2M M, +M?N1-m2)"
where M i =u; /(cth;),M} =U?/c} <<1 are the poloidal and toroidal Mach numbers and
c2 =yP/p. For perturbations, we expand the set of oscillating amplitudes {p,V||,,5} in

Fourier series over poloidal angle, as for densityﬁ = Lo (,50 +p.cos0+ p, sin& ), where the
first harmonic is only taken into account. Next, using the vector and scalar products of
momentum equation with the h-vector in perturbative analyses of MHD equations, we obtain

the set of equations for the pressure, density, and parallel velocity oscillations

=y, +1IM p/—l q,o1 %2 —1;/1 M, pé (3a)

p. =P, —iMpp%zHy(l—Md)Mpp%z (3b)
iQc,p, =v,+cM ,p, (3¢)
1Qc,p, =-2q,v,—v,—c,M ,p, (3d)
1Qv, =(2qMMp—qM,)vb—Mpvc—cSpC/;/ (3e)
iQv, =M v +c.ply 31)

where q,, = q[l + ;/(M JI2-M M, )](1 - )_1, = wRyq/c,, is the normalized frequency,

=-c E, / By,and M, =(1-1/y)p,2+ p, )_1 is the parameter responsible for the heat flux

effect where the approximation |¢|=1 is used. Further, to get the geodesic continuum

frequency we employ the current continuity equation for the perturbed current V-j;=0 where
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only cos@ -pressure perturbations may contribute due to the standard averaging procedure

over the magnetic surfaces used to evaluate geodesic modes

iQ
fR(V-j, HO=RY, <], >:Mi{vb +ig&Ps +ig&PLs p2 +1%Mi:0 )

B,q dr 2Q
Here, the averaged current may be presented via radial component of the dielectric

tensor< j, >=—i%ﬂ_80Er. Finally, using combinations of eq. (3a-3f), we calculate the

perturbed pressure, density, and velocity, which are introduced into eq. (4) to obtain the

geodesic continuum equation through the radial tensor component

c? N+(§N+0(,01)

80:—2’
chlt 2021+ M2+ M2M,)+1-2M KQZ Ql )+

=0 (5)

where ¢, = B/ \J47m.n, is Alfvén velocity and terms in numerator are
N =0 Q242421+ M2+ (M, M) )+3M2 |+ @1+ 2¢° (14 2M 2 +5M% —6M M, )|~ M2 (1 +24%),
N =g’ y2M M, +4M>M, —2M* —4M2M? - M} 2)0" + BM2 (M2 -2Mm )
rqlar oMl =3+ MM, —2M (M2 +2M M )+ (Ty +13)M M
F-YDM! - @y 1M M, Q7 + 2M , + MOM? - g*8M ! + B+ MM

3 3 2
+(y =M, /2=M )M} —12M>M, - 4M ;M|

Exact expressions in above equation are very complicated and we present them in an
approximated form. The expressions for the geodesic modes are found from the numerator

roots. Keeping terms of the order of p, in the numerator of eq.(5), we use the equation N=0 to

obtain two high order roots 5212’2, which correspond to the GAM;, branches
O =2+ +(2-1/q% +2/q* M2 +am? —4(1-1/g* M M, | /R . (6a)

O =1+ (3-2/q* M —4MPMZ]C%2R5 . (6b)

These geodesic modes have been also obtained in Ref 5 and first GAM branch for M,=0 in

eq.(6a) exactly coincides with the one presented in Ref 4. In the denominator, ignoring

corrections of 8D = O(p;), we found Q7 , = (liMp )2 i(liMp )MpMd +0(p}),
Q. =M ; (1 -M, )2 +0(p,") . Here, we note that the sound branch in eq.(6b) written in the

dimensionless form Q) =1+ 3-2/q¢>)M ; —4M ,M, stays in the frequency band between

the denominator roots Q> , = 1+2,/M 127 in eq. (7). It means that the branch disappears in the

limit M,—0 due to the factors (1), which are divided out in the fraction of eq. (5).
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Most interesting is the third new ZF root of equation N+ 0N=0 in the numerator of eq.(5)

q>(r-1
2(1+24%)

2
W =| M2(1-M,)* + (M2 -2m M, +2M§)M2} S

" la’R;
that is only depend on poloidal/toroidal circulation frequency and it has the frequency, which
is small in comparison with the geodesic ones in eq.(6a,b). The mode frequency stays at the

poloidal circulation frequency u,/r when toroidal rotation M} << M ~ M ’is not yet too

small. The mode disappears in the formal limit M = 0 when the factors le -M:(1-M, )2J

are divided out in the fraction of eq (5). In the case of preferentially toroidal rotation

M >> M; in eq.(9), we have result of Ref 4.

It is very important to take into account the Alfvén wave continuum (AWC) to verify
transitions of the continuum branches and to know where continuum extremum will occur
because the real eigenmodes may only propagate at the maximum or minimum of the

continuum [6]. In a quasi-cylindrical approach, the AWC equation may be written in the form:

2p2 2

C() R ’\2 1 d
& s B =K E, = ﬁ("q__ E " j

¢’R, q°R do \ :
Therefore, there is intersection of GAM'’s 1 "

] —— Mp=0.5, Mt=0.05

with the Alfvén continuum at the rational 1 --+=--Mp=0.05, Mt=0.5
magnetic surfaces g=m/n. To show et

transitions  between the continuum
branches, the squared frequency of the

continuum is plotted schematically in Fig.1

’ (normalized to (c/gR,)°)

as a function of g at the rational surface

o
-
1

defined by m=3, n=2 poloidal /toroidal

mode numbers. Typical tokamak plasma ‘,

parameters =0.1Ry, (ca/cs) =10, and c/ca= el

100 are chosen for the preferentially

poloidal (M,=0.5, M;=0.05) or for preferentially toroidal (M,=0.05, M;=0.5 ) rotation.
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