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Abstract

Contrary to wide spread belief, determination of the frequencies and growth
rates of MHD waves and instabilities in rotating plasmas does not require non-
self adjoint operators. The physics involves the generalized force operator and the
Doppler–Coriolis shift operator, which are both self-adjoint, but they occur in a
quadratic eigenvalue problem [1] with complex eigenvalues. Enclosing the system
with a resistive wall yields a cubic eigenvalue problem [2], where the dissipation
of the wall permits the additional class of resistive wall modes. Since these modes
grow on a much longer time scale than the ideal MHD ones, they may be feedback
stabilized [3]. To accomplish that, knowledge of the full spectrum of modes of
the system is essential. A general method to achieve this for the quadratic (ideal)
eigenvalue problem has been developed recently by constructing the solution paths
in the complex ω-plane [4]. These are obtained by taking away the outer boundary
and solving the open boundary value problem, but restricting the solutions to have
no energy flow into or out of the system. This yields curves in the complex ω plane
on which the eigenvalues must be situated. They are determined by imposing
the missing boundary condition. Here, the method is generalized to the cubic
(dissipative) eigenvalue problem by accounting for the energy dissipation in the
resistive wall. The obtained topologies of the solution paths yield important new
insights into the coupling of the resistive wall modes with the co- and counter-
rotating external kink modes. Stability regimes obtained depend on the details of
the profiles of the safety factor q, the toroidal velocity vϕ, the poloidal velocity vp,
the wall position w and the dissipative time scale τD of the wall.

1 Solution path method

Moving from the static MHD spectral problem of Bernstein et al. (1958),

F(ξ) = −ρω2ξ , (1)

to the stationary one described by Frieman and Rotenberg [1],

G(ξ)− 2ωUξ + ρω2ξ = 0 , U ≡ −iρv · ∇ , (2)

the widely spread conviction has been that “the latter problem is non-self-adjoint”. How-
ever, energy is conserved and both operators, the generalized force operator G and the
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Doppler–Coriolis shift operator U , are self-adjoint! A new approach to the MHD spec-
tral problem of stationary flow, exploiting these properties, is described and extensively
exploited in the first chapters of the new textbook on advanced MHD [5].

Figure 1: Eigenvalues for a toroidally rotating plasma surrounded by a resistive wall occur
at the intersection of the solution path (red) and the real part of the RWM boundary
condition (blue); rwall = 1.05rpl, τD = 108.

The method consists of considering the open system, obtained by removing one of
the boundaries, and computing the imaginary energy W2 that has to be injected or
extracted in order to get harmonic time dependence exp(−iωt). Closing the system
again by demanding that this energy vanishes yields curves in the complex ω-plane:

W2 ≡ Im
(
W [ξ(r; ω)]

)
= 0 ⇒ solution path of unstable solutions . (3)

The complex eigenvalues ω = σ + iν have to lie on this path. They are found by
demanding that the real part of the alternator R (the alternating ratio of solutions of
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the differential equations) vanishes:

R1 ≡ Re
(
ξ(xe)/Π(xe)

)
= 0 ⇒ eigenvalues . (4)

The solution path and alternator yield a powerful new way of computing the complex
eigenvalues of stationary moving plasmas.

Figure 2: Eigenvalues for a poloidally rotating plasma surrounded by a resistive wall occur
at the intersection of the solution path (red) and the real part of the RWM boundary
condition (blue); rwall = 1.05rpl, τD = 108.

2 Resistive wall modes in rotating plasmas

The generalization to the analysis of the resistive wall mode (RWM) is straightforward.
Again, the solution path is obtained from energy conservation in the open system, but
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now accounting for dissipation in the resistive wall :

W2,tot ≡ W2,ideal + DRW = 0 . (5)

The requisite expression W2,total now contains an ideal part W2,ideal , following from self-
adjointness of the force operator G in the plasma, and an additional dissipative part DRW

of the dissipation in the wall. Again, the eigenvalues have to lie on this solution path.
They are found by a similar dissipative adaptation of the alternator concept, involving
the real part of the boundary condition at the resistive wall.

Solutions are shown in Figs. 1 and 2 for toroidally, resp. poloidally, rotating plasmas
in a low-β tokamak. The two figures show how the three mode picture of two damped
external kink modes (just below the real axis) and the single resistive wall mode (just
above the origin on the imaginary axis), first found in [2] for the static case, changes for
increasing rotation velocities. The three modes are situated on solution paths (in red)
that merge and split again, depending on the magnitude of the rotation speed (measured
in units of the Alfvén speed). Note that poloidal rotation, though an order of magnitude
ǫ ≡ Bpol/Btor smaller than toroidal rotation, has similar effects on the spectrum of the
dissipative three mode interaction. In particular, a more sizeable stabilization occurs for
rather moderate rotation speeds. Since the results shown are for the worst possible case
of a tokamak with a constant current profile, a range of stable operation regimes may be
obtained. A detailed investigation of these is in progress.

3 Conclusions

• The solution path method has been generalized to the resistive wall mode problem.

• Both toroidal and poloidal rotation yield an intricate interaction between the two
stable kink modes and the unstable RWM: stabilizing or destabilizing, depending on
details of the velocity profiles.

• The method is perfectly parallelizable, may be extended to toroidal systems, and
thus provides a powerful new tool for the study of the interaction of MHD modes
with the external environment.
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