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Abstract 

The Prague IPP recently acquired from UKAEA Culham the COMPASS tokamak together with an 

incomplete 1.3 GHz lower hybrid (LH) system [1]. A proposal for an alternative 3.7 GHz 

COMPASS LH multi-junction antenna was previously presented in Refs. [2, 3]. We present herein 

simulations of Lower Hybrid Current Drive (LHCD), in support of a choice between the 1.3 GHz and 

the 3.7 GHz LH systems. The LHCD simulations are carried out with state-of-the-art ray 

tracing/Fokker-Planck codes C3PO/LUKE [4, 5] and GENRAY/CQL3D [6, 7]. These two suites of 

codes are very different in terms of organization and applied numerical methods. Despite these 

differences, and despite the very wide principal spectral component of COMPASS antenna (∆N//=1.7 

at 1.3 GHz, ∆N//=0.6 at 3.7 GHz)—essentially at the limit of geometrical optics—the two codes give 

compatible results in terms of power deposition and LHCD efficiency.  

 

1 Introduction 

COMPASS is a compact size tokamak [1] with major radius Rp =0.576 m, minor radius ra=0.21 m, 

operating at a toroidal magnetic field between 1.2 Tesla and 2.1 Tesla, and a plasma current between 

0.1 MA and 0.25 MA. Two distinct operating MHD equilibria are foreseen, the first, termed SND, 

has low triangularity, δ≈0.4. The second, termed SNT, has higher triangularity, δ≈0.7. For the 

purpose of the present study, we consider 4 operation scenarios specified in Table 1 below 

 

Table 1 Compass operation scenarios foreseen for lower hybrid auxiliary heating and current drive  
(δ … triangularity, κ … elongation) 
 

Scenario  BT [T} Ip [kA] δδδδ κκκκ ne0 [1019 m-3]� Te0 [keV]

SND-01 1.2 175 0.4 1.4 3.0 1.2 

SND-02 1.2 175 0.4 1.4 3.5 1.5 

SNT-01 2.1 250 0.7 1.5 3.0 1.1 

SNT-02 2.1 250 0.7 1.5 3.5 1.5 

 

The IPP Prague installation of the COMPASS tokamak came from UKAEA CULHAM with a system 

capable of coupling about 200 kW of LH power to the plasma. The associated at 1.3 GHz slow wave 

launcher is a Brambilla-type 8-waveguide antenna (grill), but lacking power supplies and other 
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necessary hardware. A substantial investment is therefore necessary to render the system operational. 

As an alternative, CEA, IRFM has offered IPP Prague 2-3 of their older 3.7 GHz, 500 kW pulsed 

TED TH2103 klystrons to power a prospective new multi-junction antenna [2, 3] for COMPASS, 

shown schematically below: 

 
Two klystrons would power the 2 sets of poloidally connected modules. Such a new LH system for 

COMPASS would likewise require a substantial investment into antenna construction and auxiliary 

hardware. Principal LH antenna properties which are of interest to lower hybrid current drive (LHCD) 

are their reflectivity (R) and directivity (D). For a typical COMPASS edge density of about 1018 m-3 

the ALOHA antenna - plasma coupling code  gives R≈15%, D≈70% for the 1.3 GHz antenna, while 

for the 3.7 GHz antenna R is negligible and D≈68% [2, 3]. Section 2 gives results of ray-

tracing/Fokker-Planck LHCD simulations for COMPASS at 1.3 GHz and 3.7 GHz from two different 

codes: section 2.1 gives results from the CP3O / LUKE code [4, 5], and section 2.2 gives LHCD 

results from the GENRAY / CQL3D [6, 7] code. Finally, section 3 gives our conclusions. 

 

2 Ray-tracing / Fokker-Planck simulations 

2.1 C3PO / LUKE results 

A feature which distinguishes the C3PO/LUKE simulation method from all other similar LHCD 

codes is that C3PO traces just one ray (the central N//0) per spectrum lobe and poloidal antenna row. 

Tables 2a, b and Fig. 1 show the principal results for plasma conditions of Table 1. 

Table 2a Selected results for 90° waveguide phasing of the 1.3 GHz antenna, at 210 kW of LH 
input power. PLH is the absorbed power and <ρabs> is the mean location of absorption. 
 
equilibrium f [MHz] N//0 PLH [kW] ILH [kA] η [A/w] <ρabs>  
SND-01 1.3 3.45 210 50 0.24 0.65 
SND-02 1.3 3.45 210 240 1.14 0.70 
SNT-01 1.3 3.45 210 50 0.24 0.65 
SNT-02 1.3 3.45 210 220 1.05 0.85 
 
Table 2b Selected results for 90° waveguide phasing and 0° module phasing of the multi-
junction 3.7 GHz antenna, at 500 kW of LH input power. 
 
equilibrium f [MHz] N//0 PLH [kW] ILH [kA] η [A/w] <ρabs>  
SND-01 3.7 2.5 500 150 0.30 0.20 
SND-02 3.7 2.5 500 450 0.90 0.45 
SNT-01 3.7 2.5 500 70 0.14 0.45 
SNT-02 3.7 2.5 500 260 0.52 0.60 
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2.2 GENRAY / CQL3D results 

Selected results are shown in Tables 3a, b, and in Fig. 2. 

We note that the preferred operation condition for LHCD at both frequencies is at higher BT-field 

(because of better LH wave accessibility). We also note that both codes give compatible current 

density profiles (except for the SND-02 case). 

4 Conclusions 

The 3.7 GHz multi-junction proves a better choice than the 1.3 GHz standard grill mainly because of 

its much smaller reflectivity in the n>2.5x1017 m-3 edge density range. An obvious advantage of the 

projected 3.7 GHz system is a much larger available operating power: 0.5 MW per klystron. Thus the 

3.7 GHz system can easily supply the maximum allowable 0.5 MW (corresponding to the empirical 

antenna power density limit of 25 MW/m2 [8]) to the plasma. The 3.7 GHz system also offers the 

 

  
Fig. 1 Power deposition and current density profiles for BT=2.1T scenarios of Table 1  
a) SND-02-f1p3, b) SNT-02-f1p3, c) SND-02-f3p7, d) SNT-02-f3p7 

(a) (b) 

(c) (d) 

Table 3a Selected results for 90° waveguide phasing of the 1.3 GHz antenna,  
at 210 kW of LH input power. 
equilibrium f [MHz] N//0 PLH [kW] ILH [kA] η [A/w] <ρabs>  
SND-01 1.3 3.45 153 28 0.18 0.20, 0.70 
SND-02 1.3 3.45 196 170 0.87 0.25, 0.70 
SNT-01 1.3 3.45 206 127 0.61 0.35, 0.70 
SNT-02 1.3 3.45 209 201 0.96 0.35, 0.70 
 
Table 3b Selected results for 90° waveguide phasing, 0° module phasing of the  
multi-junction 3.7 GHz antenna, at 500 kW of LH input power. 
equilibrium f [MHz] N//0 PLH [kW] ILH [kA] η [A/w] <ρabs>  
SND-01 3.7 2.5 447 388 0.84 0.20, 0.45 
SND-02 3.7 2.5 480 402 0.84 0.25, 0.60 
SNT-01 3.7 2.5 488 131 0.23 0.55 
SNT-02 3.7 2.5 495 360 0.73 0.20, 0.45 
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possibility of better comparison with other existing LH experiments in Europe (Tore Supra, JET). The 

estimated LHCD efficiencies are of the order of 0.5 – 1 A/W, depending on operation conditions. As 

a next step in the simulations, we plan to obtain self-consistent results for the LH power absorption 

and electron temperature profiles. 
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Fig. 2 Power deposition and current density profiles for BT=2.1T scenarios of Table 1  
a) SND-02-f1p3, b) SNT-02-f1p3, c) SND-02-f3p7, d) SNT-02-f3p7 

(a) (b) 

(c) (d) 
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