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Introduction

The use of the lower hybrid (LH) waves is a highly desirable tool for tailoring the plasma cur-
rent profile in advanced tokamak scenarios. Experiments on LHCD in plasmas with parameters
close to those expected in ITER (especially as regarding electron density), have been performed
in these last years to master this issue: in FTU [1], in JET [2] and C-Mod [3]. The LH waves
are characterized by two modes of propagation called the slow and the fast wave characterized
by an Ez/Ex and Ey/Ex wave field polarization respectively. Usually, the lower hybrid waves
are launched as slow waves into a tokamak by means of waveguide antennas (grill). Anyway
in real plasmas, the non-uniformity of the magnetic field and of the plasma density give rise to
critical layers where the slow wave may be converted into the fast wave with a consequent loss
of energy. The propagation and the mode conversion of the LH waves is studied analytically
and numerically in the following paper by solving the full electromagnetic wave equation (a
fourth order ordinary differential equation for the electric field) [4] which is obtained from the

Maxwell-Vlasov model.

Wave equation and mode conversion for a LH wave

The relationship between the wave field E and the current density J in the plasma should be
described by solving the Maxwell equation and the Vlasov kinetic equation for the distribution
function but some assumption can be made to simplify the analysis. First the fields amplitudes
are supposed to be sufficiently small so that |E|> << kT’; in this way the kinetic equation can
be linearized and the relation between E and J can be assumed linear as well. Then the plasma
medium is supposed to be homogeneous or weakly inhomogeneous, that is the wavelength
A of the radiation is much smaller than the characteristic length L of the non-homogeneities.
Finally, if the medium is supposed to be stationary, non dispersive in time and space or slightly
dispersive, a Fourier analysis can be carried over. The problem can be further simplified if

the wave is propagating in a plane stratified plasma where x is the radial coordinate, y the
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poloidal and z the toroidal coordinate, with the magnetic field lying along z. Rather than making
a Fourier analysis, it can be used a short cut representation when dealing with a single k and
, that is E = R{E (x)e/ &2} = R{E (x)e/?}, having for a LH k, = 0. Besides if the plasma
temperature is such that the condition A >> py is satisfied, the expressions of the hot dielectric
tensor can be Taylor expanded. The differential wave equations obtained is the following if the

lowest order for T is retained:
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The electric fields Ex, Ey and E, are normalized to the electric fields’ intensities whilst the
spatial coordinate is such that X = 7, where a is the plasma characteristic length. The other
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S, D, P are the elements of the cold dielectric tensor whilst A = % introduce a de-
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pendence on the temperature in the dielectric tensor, where sé
component of the dielectric tensor retained after expansion and v, the thermal velocities.
Solution for a homogeneous plasma
The Eq. (1) can be easily solved if the dielectric is homogeneous; moreover if the dielectric is

cold (T— > 0) the g 1s zero and the analytic expression for the accessible wave is the following:
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where the costants ¢ 1... are complex quantities and n,, n,_ are the slow and the fast wave
refractive indexes.

WKB solution for a non-homogeneous plasma

When the medium is not homogeneous, but A << L, and cold, a WKB approximation can be

used [4] and neglecting terms greater than J, Uit is obtained:
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The same equation holds for £, (). It is worth noting the method remains valid before and
after a mode conversion point but it fails on the turning points, where (8 + B’ — aa’)?> — 4B B’ =

0, as well as in a cut-off where n,+— > 0.
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Numerical SOlutiOIl —Ey-fast numerical solution

—Ez-slow numerical solution

A complete analysis can be carried — - US| Non-hom
on using a numerical solution. A fi-
nite difference method or a Runge-

Kutta shooting method is used depend- .,

ing on the boundary condition chosen 7 S S g0 ey
(Dirichlet or Cauchy). The slow and
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fast wave propagating in a homoge- igure 1: From left: slow and fast wave propagating in

a homogeneous, in a non-homogeneous plasma, com-
neous or non-homogeneous plasma are

shown in Fig. 1. The figure also de- parison between a numerical and a WKB solution.
picts a comparison between the numer-
ical solution and the WKB solution, showing a good agreement. In a non-homogeneous plasma,
the wave can reach a critical layer depending on the choice of n;; here a mode conversion hap-
pens and part of the slow wave converts to the fast wave and viceversa. Fig. 2 shows how the
refractive index n,; and n,_ changes as the refractive index n, varies from about 1.7 to 1.74 .

In these cases the waves propagates until they become evanescent as it is depicetd in Fig. 2 for

n. = 1.719 (Lh.s.) and n, = 1.717.

Poynting vector

It is very interesting to calculate the Poynting vector and thus the power carried by the waves.
The expression of the Poynting vector in time is well known and very often a complex no-
tation for the electric and magnetic fields is used to calculate the Poynting vector as well.
If the waves are periodic in space and time and their

amplitude is slowing varying, the final expression I e

can be averaged over time ¢ and space x — z.: 5 BN
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In a slab geometry, the result is the following :
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where the<>, is the average over the x coordinate. For a homogeneous or non-homogeneous

Figure 2: Slow and fast waves encounter-
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plasma, non dissipative so that S?Z = 0, the power carried by the waves is a constant. It is worth
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noting if the slow wave is excited by the antenna, the coupling between the slow and the fast
wave induces the fast wave as well. Anyway most of the power is carried by the slow wave, as
Eq.(5) demonstrates, if one compares the contribution coming from the slow (£.), the fast (Ey)
and mixed term (E.E,)separately. Moreover the analysis of the power carried along the plane
stratified plasma during a mode conversion is in progress. As a preliminary study, during a mode
conversion part of the wave can tunnel across the critical layer. How much of the wave passes
across the critical layer depends on its wavelength A as compared to the critical layer’s length
d. If the A is about equal or greater than the d the wave tunnels across the mode conversion
point and most of the power is transferred across the turning point. On the contrary for A less

than the d most of the power is reflected back to the initial point.

Conclusions

The propagation of the LH wave has been analyzed by means of different approaches: ana-
lytic, with a WKB method and numeric. A complete analysis can be carried on solving the full
wave differential equation for the fields with Dirichlet or Cauchy boundary condition by means
of a numeric approach; besides the WKB method confirms the good agreement with the nu-
meric solution when the wave is propagating but it fails on confluence points. The study shows
the plasma can be accessible to the wave until it reaches a critical layer where a mode conver-
sion happens. So even if the plasma is inaccessible to a single wave it can be accessible to part
of a full a nz spectrum, underlying the importance of a deep knowledge of the mode conversion
physics. To this purpose, a simple expression for the Poynting vector for a slab geometry has
been obtained. Indeed, as a preliminary study, during a mode conversion part of the power is
transferred to the companion mode with a consequent lose of efficiency. Thus if most of wave
tunnels across the critical layer, it means most of the power is transferred. On the contrary if
the wave cannot tunnel, the power is reflected back to the companion mode. The study of this

conjecture is in progress.
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