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Introduction

The use of the lower hybrid (LH) waves is a highly desirable tool for tailoring the plasma cur-

rent profile in advanced tokamak scenarios. Experiments on LHCD in plasmas with parameters

close to those expected in ITER (especially as regarding electron density), have been performed

in these last years to master this issue: in FTU [1], in JET [2] and C-Mod [3]. The LH waves

are characterized by two modes of propagation called the slow and the fast wave characterized

by an Ez/Ex and Ey/Ex wave field polarization respectively. Usually, the lower hybrid waves

are launched as slow waves into a tokamak by means of waveguide antennas (grill). Anyway

in real plasmas, the non-uniformity of the magnetic field and of the plasma density give rise to

critical layers where the slow wave may be converted into the fast wave with a consequent loss

of energy. The propagation and the mode conversion of the LH waves is studied analytically

and numerically in the following paper by solving the full electromagnetic wave equation (a

fourth order ordinary differential equation for the electric field) [4] which is obtained from the

Maxwell-Vlasov model.

Wave equation and mode conversion for a LH wave

The relationship between the wave field E and the current density J in the plasma should be

described by solving the Maxwell equation and the Vlasov kinetic equation for the distribution

function but some assumption can be made to simplify the analysis. First the fields amplitudes

are supposed to be sufficiently small so that |E|2 << kT ; in this way the kinetic equation can

be linearized and the relation between E and J can be assumed linear as well. Then the plasma

medium is supposed to be homogeneous or weakly inhomogeneous, that is the wavelength

λ of the radiation is much smaller than the characteristic length L of the non-homogeneities.

Finally, if the medium is supposed to be stationary, non dispersive in time and space or slightly

dispersive, a Fourier analysis can be carried over. The problem can be further simplified if

the wave is propagating in a plane stratified plasma where x is the radial coordinate, y the
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poloidal and z the toroidal coordinate, with the magnetic field lying along z. Rather than making

a Fourier analysis, it can be used a short cut representation when dealing with a single k and

ω , that is E = ℜ{Ê(x)e j(kzz−ωt)}= ℜ{Ê(x)e jφ}, having for a LH ky = 0. Besides if the plasma

temperature is such that the condition λ >> ρL is satisfied, the expressions of the hot dielectric

tensor can be Taylor expanded. The differential wave equations obtained is the following if the

lowest order for T is retained:

d2Êy(x)
dx2 +δ−1

0 α(x)
dÊz(x)

dx
+δ−2

0 β (x)Êy(x) = 0 (1)

d2Êz(x)
dx2 +δ−1

0 α ′(x)
dÊy(x)

dx
+δ−2

0 β ′(x)Êz(x) = jδ−2
0 Λ(x)Êz(x)

with Êx(x) =− j DÊy(x)+nzδ0
dÊz(x)

dx
n2

z−S

The electric fields Êx, Êy and Êz are normalized to the electric fields’ intensities whilst the

spatial coordinate is such that x = x
a , where a is the plasma characteristic length. The other

quantities are α = nzD
n2

z−S , α ′ = nzD
S , β =− (n2

z−S)2−D2

n2
z−S , β ′ =− (n2

z−S)2P
S , δ−1

0 = ωa
c .

S, D, P are the elements of the cold dielectric tensor whilst Λ = (n2
z−S)2εA

zz
S introduce a de-

pendence on the temperature in the dielectric tensor, where εA
zz =

2ω2
pα ω
√

π
k3

z vthα
is the anti-hermitian

component of the dielectric tensor retained after expansion and vthα the thermal velocities.

Solution for a homogeneous plasma

The Eq. (1) can be easily solved if the dielectric is homogeneous; moreover if the dielectric is

cold (T−> 0) the εA
zz is zero and the analytic expression for the accessible wave is the following:

Êz(x) = c̃11e jδ−1
0 nx+x + c̃22e− jδ−1

0 nx+x + c̃33e jδ−1
0 nx−x + c̃44e− jδ−1

0 nx−x (2)

where the costants c11... are complex quantities and nx+, nx− are the slow and the fast wave

refractive indexes.

WKB solution for a non-homogeneous plasma

When the medium is not homogeneous, but λ << L, and cold, a WKB approximation can be

used [4] and neglecting terms greater than δ−1
0 it is obtained:

Êy(x) =
w1

n1/2
x+ (n2

x+− β+β ′−αα ′
2 )1/2

e jδ−1
0

∫
nx+dx +

w2

n1/2
x+ (n2

x+− β+β ′−αα ′
2 )1/2

e− jδ−1
0

∫
nx+dx + (3)

w3

n1/2
x− (n2

x−− β+β ′−αα ′
2 )1/2

e jδ−1
0

∫
nx−dx +

w4

n1/2
x− (n2

x−− β+β ′−αα ′
2 )1/2

e− jδ−1
0

∫
nx−dx

The same equation holds for Êz(x). It is worth noting the method remains valid before and

after a mode conversion point but it fails on the turning points, where (β +β ′−αα ′)2−4ββ ′=

0, as well as in a cut-off where nx±−> 0.
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Figure 1: From left: slow and fast wave propagating in

a homogeneous, in a non-homogeneous plasma, com-

parison between a numerical and a WKB solution.

Numerical solution

A complete analysis can be carried

on using a numerical solution. A fi-

nite difference method or a Runge-

Kutta shooting method is used depend-

ing on the boundary condition chosen

(Dirichlet or Cauchy). The slow and

fast wave propagating in a homoge-

neous or non-homogeneous plasma are

shown in Fig. 1. The figure also de-

picts a comparison between the numer-

ical solution and the WKB solution, showing a good agreement. In a non-homogeneous plasma,

the wave can reach a critical layer depending on the choice of nz; here a mode conversion hap-

pens and part of the slow wave converts to the fast wave and viceversa. Fig. 2 shows how the

refractive index nx+ and nx− changes as the refractive index nz varies from about 1.7 to 1.74 .

In these cases the waves propagates until they become evanescent as it is depicetd in Fig. 2 for

nz = 1.719 (l.h.s.) and nz = 1.717.

Poynting vector

It is very interesting to calculate the Poynting vector and thus the power carried by the waves.

The expression of the Poynting vector in time is well known and very often a complex no-

tation for the electric and magnetic fields is used to calculate the Poynting vector as well.

Figure 2: Slow and fast waves encounter-

ing a critical layer.

If the waves are periodic in space and time and their

amplitude is slowing varying, the final expression

can be averaged over time t and space x− z.:

P =
c

8π
E(x,z, t)×B(x,z, t)=

c
8π

ℜ{Ê(x)× B̂∗(x)e2φi}
(4)

where φi is the imaginary part of the complex phase

φ .

In a slab geometry, the result is the following :

P =
c

8π
ℜ{< j

c
ω

Êy
∂
∂x

Ê∗y + j
c
ω

Êz
∂
∂x

Ê∗z −
kzc
ω

ÊzÊ∗x >x}
(5)

where the<>x is the average over the x coordinate. For a homogeneous or non-homogeneous

plasma, non dissipative so that εA
zz = 0, the power carried by the waves is a constant. It is worth
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noting if the slow wave is excited by the antenna, the coupling between the slow and the fast

wave induces the fast wave as well. Anyway most of the power is carried by the slow wave, as

Eq.(5) demonstrates, if one compares the contribution coming from the slow (Êz), the fast (Êy)

and mixed term (ÊzÊx)separately. Moreover the analysis of the power carried along the plane

stratified plasma during a mode conversion is in progress. As a preliminary study, during a mode

conversion part of the wave can tunnel across the critical layer. How much of the wave passes

across the critical layer depends on its wavelength λ as compared to the critical layer’s length

d. If the λ is about equal or greater than the d the wave tunnels across the mode conversion

point and most of the power is transferred across the turning point. On the contrary for λ less

than the d most of the power is reflected back to the initial point.

Conclusions

The propagation of the LH wave has been analyzed by means of different approaches: ana-

lytic, with a WKB method and numeric. A complete analysis can be carried on solving the full

wave differential equation for the fields with Dirichlet or Cauchy boundary condition by means

of a numeric approach; besides the WKB method confirms the good agreement with the nu-

meric solution when the wave is propagating but it fails on confluence points. The study shows

the plasma can be accessible to the wave until it reaches a critical layer where a mode conver-

sion happens. So even if the plasma is inaccessible to a single wave it can be accessible to part

of a full a nz spectrum, underlying the importance of a deep knowledge of the mode conversion

physics. To this purpose, a simple expression for the Poynting vector for a slab geometry has

been obtained. Indeed, as a preliminary study, during a mode conversion part of the power is

transferred to the companion mode with a consequent lose of efficiency. Thus if most of wave

tunnels across the critical layer, it means most of the power is transferred. On the contrary if

the wave cannot tunnel, the power is reflected back to the companion mode. The study of this

conjecture is in progress.

References

[1] R. Cesario et al., Nat. Commun., 1, 1:55 doi: 10.1038/ncomms1052 (2010)

[2] M. Goniche, PPCF, 2010

[3] G. Wallace, Phys. Plasmas 17, 082508 (2010)

[4] A Cardinali, V Fusco 2010 http://dx.doi.org/10.1088/1742-6596/260/1/012007

38th EPS Conference on Plasma Physics (2011) P1.101


