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Over the last years various methods have been successfully used for the computation of neoclas-
sical transport in non-axisymmetric magnetic field configurations [1]. The evaluation of mono-
energetic bootstrap current coefficients has been considerably improved by the utilization of
variance reduction techniques [2]. Computations of mono-energetic transport coefficients with
this type of methods [3] in many cases are based on pitch-angle scattering collision models,
therefore it might be necessary to apply momentum correction techniques in order to compute
various plasma quantities of interest. For this purpose the evaluation of the neoclassical conduc-
tivity coefficient is essential.
The linearized drift kinetic equation determines the evolution of the first-order guiding center
(averaged over the gyro motion) distribution function f°. If a parallel electric field is present
and no radial gradients are taken into account this equation takes the form

Fo

L = vz, M

where v| is the parallel velocity, s is the distance along the magnetic field line, o =f— fu,
f 1s the particle distribution function, fj; is a Maxwellian, e is the particle charge, T is the
temperature, E| is the parallel electric field, v, is the deflection collision frequency, 2 =
0.59/dA (1 —A%)d/dA is a Lorentz collision operator and ¢ denotes the sign of v|. Intro-
ducing a normalized distribution function f° according to
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where B = B /Bo, B is the module of the magnetic field and By is the reference magnetic field,
the drift kinetic equation can be written as
7o
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where the source is given by 0° = v”}§. Mono-energetic transport coefficients D;y can be rep-

resented as
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where A = V| /v is the pitch angle variable, v is the module of the test particle velocity and

_ Jdd [de,/gA
Jdd [do/g

denotes the average over the volume between neighboring flux surfaces, g is the metric deter-

(A) ®)

minant of flux coordinates (v, ¥, ¢) where v is the flux surface label, ¥ and ¢ are the poloidal
toroidal angles of flux coordinates, respectively. For the conductivity coefficient computed in
this work the indices I and I’ are equal to 3 and omitted in the distribution functions and sources
below. The quantity ¢,  in equation (4) is in this case given by g; © = —oB and the coefficient

o3 = 1 which yields for the mono-energetic conductivity coefficient D33

1/1 ! s 7o

In order to apply a Monte Carlo procedure for the solution of the drift kinetic equation it
is convenient to re-write (3) in the integral form [2] using a Green’s function G defined by
Zp G(t,2,29) =0 and G(0,2,29) = 8(z—120)/+/g(20), where z= (¥, ¢, 1). This Green’s func-
tion is normalized according to [ d3z+/g(z) G(t,2,20) = 1. A formal solution to equation (3) is
given by

fo(t,z) = /d3z()\/g(zo) (G(t—to,z,zo)fo(to,zo) + tdt’G(r—t',z,zo)QG(zo)> . (D

To

If a steady state solution is looked for, f°(¢,z) = f°(z), equation (7) becomes an integral equa-
tion for F°(z) = \/g(z) f°(z) which is given below also in operator form,

FO(@) = [ Pk (2,20)F (20)+0°(2) = HF +0°, ®)

where K(z,z9) = \/g(z) G(At,z,2¢), At is the integration time step and

0°(0) = [ @205l Vsa) [ 4G 220)0° () = VE@ MO R). 9)

The Monte Carlo operator, Z(At, ), is introduced as a random position of a test particle starting
at zo after a single time step modeled in a standard way [4]. First, the particle pitch is changed

randomly in accordance with 7,
1/2
M =h(-A0)+(Ac(1-23)PE, Ac=22 (10)

where & is a random number which takes the values 41 with equal probabilities, and then an
integration step of particle drift equations over the time interval Az is performed. Thus, the

kernel of the integral equation is given by an expectation value

K(z,29) = 6 (z—Z(At,2p)). (11)

Equation (11) can be viewed as a definition of the random process Z(At,zg) via the transition
probability density K(z,zy) while the algorithm described in (10) defines a linear approximation
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in At of this random process. At this point, in addition to Z(At,zy), random numbers 2y =
(B)> Py Aky) where k= 0,1,2,... are introduced via the recurrence relation (13) and the
probability density (15). Various overlined quantities below are the expectation values with
respect to these random numbers. The solution of (8) by direct iterations can be presented as an
expectation value of an integral along the stochastic orbit,

Fo Zkuc:cozwg))a(z—z(k)), (12)
k=0 k=0

zgy = Z(Atz4y)), (13)

why = A0%(z()) = Arvy(z()) Blzp)), (14)

where Cy = [ d*z1/g(z) and the random starting point z ) is chosen with the probability density

§(z—21)) =Cy'\/3(2). (15)

Substituting the definition of the flux surface average (5) into equation (6) the mono-energetic

conductivity coefficient can be written as

1 3 A 1 & 5
Dy = ‘E/d 27wl == vl MiEw) Blew), (16)

where F° has been substituted from (12) and integration over z has been performed in the
second equality. The distribution of the test particles at each step remains to be the equilibrium
distribution (15). When kAr exceeds a few collision times, the correlation between Z(j) and wg))
is lost and such terms in (16) tend to zero. Thus, a finite sum over k is sufficient.
In Figs. 1-6 normalized conductivity coefficients D, = —D33 L. /I, are plotted versus the colli-
sionality parameter L./l where L. = 2R /1, R is the major radius, 1 is the rotational transform
and /. is the mean free path. In these figures are also results from NEO-2, a field line tracing
code which computes transport coefficients for zero radial electric fields in arbitrary collision-
ality regimes [5]. Computations are presented for a variety of non-axisymmetric magnetic field
configurations and confinement regimes. Results have been also benchmarked with computa-
tions by other methods [1] and stay in good agreement with those results.
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Fig. 1: Normalized conductivity coefficient D,
for LHD with R=375cm vs. collisionality pa-
rameter L. /l. at half plasma radius computed
by NEO-2 (line) and NEO-MC (points) for
E./(vB) = 0 (red), 1-10~* (green), 1-1073
(blue).
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Fig. 3: Normalized conductivity coefficient D,
for LHD with R=353cm vs. collisionality pa-
rameter L./l. at half plasma radius. Markers
and line types are the same as in Fig. 1.
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Fig. 5: Normalized conductivity coefficient D,
for HSX vs. collisionality parameter L./l at
half plasma radius. Markers and line types are
the same as in Fig. 1.
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Fig. 2: Normalized conductivity coefficient D,
for LHD with R=360cm vs. collisionality pa-
rameter L./l. at half plasma radius. Markers
and line types are the same as in Fig. 1.
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Fig. 4: Normalized conductivity coefficient D,
for TJ-II standard configuration vs. collision-
ality parameter L./l at half plasma radius.
Markers and line types are the same as in
Fig. 1.
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Fig. 6: Normalized conductivity coefficient D,
for QIPC vs. collisionality parameter L./l at
half plasma radius. Markers and line types are
the same as in Fig. 1.



