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Abstract

Spectral analysis of plasma turbulence is of prime importance for assessing compar-

isons between experiments and numerical simulations [1]. Indeed, plasma turbulence is

strongly connected to the energy confinement time, a key issue in thermonuclear fusion

research. A major difficulty in the analysis of turbulence comes from the wide spectrum of

scales that are dynamically active. In fusion plasmas, fluctuations appear at scales as small

as the particle gyroradius up to scales of the order of the device size. Turbulent phenom-

ena at different scales usually usually experience nonlinear interactions. As a consequence,

microturbulence in a magnetized plasma, as described by the gyrokinetic formalism, is

characterized [4] by a cascade of free energy in the plane perpendicular to the background

magnetic field from the largest to the smallest scale. This cascade is similar to the direct

cascade of kinetic energy in fluid turbulence [2, 3]. In the present study, recent gyrokinetic

simulations are studied in details through the analysis of the free energy balance in Ion Tem-

perature Gradient (ITG) driven turbulence. The spectra of both free energy injection due to

the temperature gradient and free energy dissipation are presented. The nonlinear transfers

due to the ExB drift term are analyzed in terms of free energy balance and are interpreted as

a cascade of free energy from the largest scales dominated by the background temperature

gradient to the smallest scales at which most of the dissipation takes place. Moreover, this

cascade appears to be essentially local in the wave vector space. The nonlinear exchanges

of free energy are indeed strongly dominated by mode-to-mode transfers between wave

vectors with similar amplitudes. Finally, a limited self-similarity range has been identified

in which the free-energy exchanges depend only on the ratio of the wave-vector amplitudes

and not on the absolute values of these wave-vectors.

The Gyrokinetic Formalism

Gyrokinetic simulations take advantage of the helical motion of charged particles in presence

of intense magnetic fields to simplify the numerical study of magnetized plasmas. In particular,

in the limit of low frequencies compared to the gyrofrequencies related to this helical motion,

a five dimensional (instead of a six-dimensional) velocity-position distribution function [5] can

be used to describe the plasma. The reduction of the phase space dimension as well as the use
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of larger time steps are the major advantages of the gyrokinetic formalism in terms of numerical

simulations.

The evolution equation for the distribution function f can be formally expressed as

∂t f = L[ f ]+N[ f , f ]+D[ f ] , (1)

where the linear term represents the influence of the fixed ion density (ωni) and temperature

(ωTi) gradients, the effects due to magnetic curvature and the parallel dynamics. The linear

dissipation term D represents the effects of the collisions and/or numerical hyperdiffusions.

The nonlinear term N represents the effect of the self-consistent electric field in the ~E×~B drift

of charged particles.

Free energy balance equation

The nonlinear term in the gyrokinetic equation (1) has the property to conserve the free energy

E [2]. It is proportional to

E ∝
∫

dΛ f 2 , (2)

where the integration over Λ has to be understood as a phase-space integration.

The evolution equation for the free energy is given by

∂E

∂ t
∝
∫

dΛ f
∂ f
∂ t

= G + N︸︷︷︸
0

−D (3)

in terms of the source and dissipative terms, given respectively by

G ∝
∫

dΛ f L[ f ] D ∝−
∫

dΛ f D[ f ]. (4)

The free energy plays the same role in gyrokinetic turbulence as the kinetic energy in fluid

turbulence.

Nonlinear transfer function

The transfer of free energy between different modes in the saturated turbulent state is in-

duced by the nonlinear term. Indeed, even if it does not influence the global free energy balance

equation, it can change, e.g., the value of this quantity associated with particular perpendicular

wavenumbers. Following the procedure used for studying energy transfer in Navier-Stokes and

in MHD turbulence [8], we decompose the perpendicular wavevector plane into domains and

measure the free energy transfer between these domains. The set of domains {d`} is assumed to

be a partition and all domains together cover the entire plane. The distribution function can then

be written as a sum over all contributions for which the perpendicular wavevectors lie in the do-

main d`. As a consequence of the Parseval theorem, the free energy can also be split into parts
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which are associated to the domains d`: E = ∑` E
`. The evolution of E ` due to the nonlinear

term can be expressed as

∂E `

∂ t

∣∣∣
N

∝
∫

dΛ f ` ∂ f
∂ t

∣∣∣
N

= ∑̀
′

T `,`′ , (5)

where the two-domain interaction terms is defined as

T `,`′ ∝
∫

dΛ f ` N[ f , f `′] . (6)

This two-domain interaction terms will be interpreted as the free energy transfers between the

domains d` and d`′ . As a consequence of the nonlinear conservation of the free energy, it is

easy to show that T `,`′
f = −T `′,`

f , which reinforces the interpretation in terms of free energy

exchanges. Indeed, if the domain d` is considered to receive a certain amount of free energy

per unit of time T `,`′
f from the domain d`′ , then the domain d`′ is seen as loosing exactly the

same amount of free energy per unit of time in profit of the domain d`. The complete dynamical

equation for E ` then reads

∂E `

∂ t
= ∑̀

′
T `,`′+G `−D`. (7)

Numerical results

The free energy transfer term defined above is now evaluated from a numerical simulation

using GENE. The physical parameters employed in this context correspond to a widely used case

of collisionless ion temperature gradient (ITG) turbulence known as the Cyclone Base Case [6].

The simulation domain is about 125 ion gyroradii wide in the perpendicular directions, and

256×128×16×48×16 grid points are used in (x,y,z,v‖,µ) space.
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Figure 1: Shell decompositions in perpendicular wavenumber space of the drive (G `) and dissi-

pation (−D`) terms (as well as their sum).
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Fig. 1 shows the numerical results for the source and dissipation terms (averaged over time

during the saturated phase of the simulation). As expected, the injection of free energy is well

localized at low k⊥ . However, the dissipative terms are not just active in the high k⊥ range,

but throughout the entire k⊥ spectrum, including the drive range. There is a net source of free

energy up to shell ` = 8 and a net dissipation beyond that.
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Figure 2: Shell-to-shell transfer in perpendicular wavenumber space of free energy (left). Total

transfer T `(right) for various `′ as function of (`− `′) (right).

The corresponding shell-to-shell free energy transfer terms are shown in fig. 2(left), and var-

ious interesting features can be observed there. First, the free energy transfer is from the large

scales to the small ones; the transfer is systematically negative for `′> ` and, due to the antisym-

metry property, systematically positive otherwise. Second, the free energy transfer is very local

in wavenumber space. Indeed, only values of T `,`′ with ` close to `′ are significantly different

from zero. In practice, for |`− `′|> 5 the free energy transfers almost vanish. This corresponds

to a ratio of wave numbers between the two shells of the order of two. Third, a limited self-

similarity range can be identified for ` between 13 and 20. Indeed, in this range, the transfer

T `,`′ seems to depend on `− `′ only, and not on the two indices separately. This is analyzed in

detailed in fig. 2(right) where profiles of T ` = T `,`′ for various `′ as function of `−`′ are shown.

It can be observed that these functions collapse in a range of `′, which suggest the existence of

a self similarity range.
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