

Second-order electrostatic gyrokinetics in general magnetic geometry and its relevance for toroidal momentum transport in tokamaks

Iván Calvo¹ and Felix I. Parra²

¹ *Laboratorio Nacional de Fusión, Asociación EURATOM-CIEMAT, 28040 Madrid, Spain*

² *Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3NP, UK*

Introduction

Gyrokinetic theory is the appropriate tool for the kinetic study of microturbulence in fusion plasmas. Let us restrict ourselves to time-independent magnetic fields and collisionless plasmas. Strictly, the set of equations determining the behavior of such a system consists of the Vlasov and Poisson's equations (the latter usually approximated by the quasineutrality equation). However, the time-scale of microturbulence is much longer than the inverse of the gyrofrequency, the time-scale of the gyration of a charged particle around a magnetic field line. It is therefore desirable to eliminate this fast gyromotion in a rigorous way and consequently save much computational time when solving the equations.

Gyrokinetics gives a systematic way to average over the gyromotion (or equivalently over the gyrophase, the degree of freedom associated to it) without losing the effect of non-zero gyroradius based on the smallness of ϵ , the ratio of the gyroradius and the characteristic length of variation of the magnetic field. In the phase-space Lagrangian formalism the objective is to find a change of variables as an asymptotic series in powers of ϵ that makes the Lagrangian independent of the gyrophase. This, of course, requires certain assumptions on the size of the quantities entering the theory, that in the so-called low-flow ordering can be summarized as follows:

$$\begin{aligned}
 \mathbf{B}(\mathbf{r}) \quad & \text{with} \quad \nabla \sim \frac{1}{L} \\
 \varphi(\mathbf{r}, t) \quad & \text{with} \quad \nabla_{\perp} \sim \frac{1}{\rho}, \quad \hat{\mathbf{b}} \cdot \nabla \sim \frac{1}{L}, \quad \frac{\partial}{\partial t} \sim \omega \\
 \frac{\omega}{\Omega} \sim \frac{\rho}{L} \sim \frac{Ze\varphi}{Mv_t^2} \sim \epsilon \ll 1,
 \end{aligned} \tag{1}$$

where \mathbf{B} is a time-independent magnetic field, L the typical macroscopic length, φ the electrostatic potential, $\rho = v_t/\Omega$, v_t , $\Omega = ZeB/(Mc)$, Ze , and M the typical gyroradius, thermal speed, gyrofrequency, charge and mass of the species of interest, and e and c are the magnitude of the electron charge and the speed of light.

The standard derivation of the gyrokinetic equations in a non-uniform magnetic field is only

accurate to first order in ε with the ordering (1). The reason is that two independent expansions are usually performed (see, for example, the review paper [1]). First $\varphi \equiv 0$ is set and an expansion in ε to first order is carried out. Then, the electrostatic potential is switched on an expansion in $\varepsilon_\varphi \sim Ze\varphi/(Mv_t^2)$ is continued up to second order. However, according to (1), $\varepsilon_\varphi \sim \varepsilon$ and the customary derivations miss terms of order $\varepsilon\varepsilon_\varphi$ and ε^2 .

In this conference contribution we give the complete result to second order [2], summarized by the full second-order gyrokinetic Hamiltonian (2), (3), (4), (5), clearly exhibiting the new terms obtained from an expansion respecting the ordering (1). The motivation to tackle the second-order computation is found in recent results by Parra and Catto showing that the correct calculation of transport of toroidal angular momentum in tokamaks requires knowledge of second-order pieces of the distribution function and the electrostatic potential [3, 4].

Phase-space Lagrangian and implementation of the gyrokinetic ordering

The phase-space Lagrangian of a charged particle in a time-independent magnetic field reads

$$\mathcal{L}(\mathbf{r}, \mathbf{v}, \dot{\mathbf{r}}, \dot{\mathbf{v}}, t) = \left[\frac{Ze}{c} \mathbf{A}(\mathbf{r}) + M\mathbf{v} \right] \cdot \frac{d\mathbf{r}}{dt} - H(\mathbf{r}, \mathbf{v}, t),$$

where the Hamiltonian is

$$H(\mathbf{r}, \mathbf{v}, t) = \frac{1}{2} M\mathbf{v}^2 + Ze\varphi(\mathbf{r}, t).$$

Introduce dimensionless variables adapted to the gyrokinetic ordering (1),

$$\check{t} = \frac{v_t t}{L}, \quad \check{\mathbf{r}} = \frac{\mathbf{r}}{L}, \quad \check{\mathbf{v}} = \frac{\mathbf{v}}{v_t}, \quad \check{\mathbf{A}} = \frac{\mathbf{A}}{B_0 L}, \quad \check{\varphi} = \frac{e\varphi}{\lambda\varepsilon T_{e0}}, \quad \check{H} = \frac{H}{Mv_t^2},$$

giving

$$\check{\mathcal{L}}(\check{\mathbf{r}}, \check{\mathbf{v}}, \dot{\check{\mathbf{r}}}, \dot{\check{\mathbf{v}}}, t) = \left[\frac{1}{\varepsilon} \check{\mathbf{A}}(\check{\mathbf{r}}) + \check{\mathbf{v}} \right] \cdot \frac{d\check{\mathbf{r}}}{d\check{t}} - \check{H}(\check{\mathbf{r}}, \check{\mathbf{v}}, t),$$

with

$$\check{H}(\check{\mathbf{r}}, \check{\mathbf{v}}, t) = \frac{1}{2} \check{\mathbf{v}}^2 + \Lambda\varepsilon\check{\varphi}.$$

Here, T_{e0} is the characteristic electron temperature. We assume that the characteristic length scale of the electrostatic potential in the direction perpendicular to the magnetic field is the sound gyroradius, $\rho_s = c_s/\Omega_i$, and the characteristic time scale is L/c_s , being c_s the sound speed and Ω_i the typical ion gyrofrequency. Concretely,

$$\hat{\mathbf{b}}(\check{\mathbf{r}}) \cdot \nabla_{\check{\mathbf{r}}} \check{\varphi} \sim O(1), \quad \nabla_{\check{\mathbf{r}}_\perp} \check{\varphi} \sim O(1/(\lambda\varepsilon)),$$

where

$$\lambda = \rho_s/\rho, \quad \Lambda = ZT_{e0}\lambda/T_0.$$

From now on we work in dimensionless variables but omit hats.

Second-order gyrokinetic phase-space Lagrangian

The program of gyrokinetics can be synthesized by saying that one looks for a transformation from $\{\mathbf{r}, \mathbf{v}\}$ to new phase-space coordinates (*gyrokinetic coordinates*) $\{\mathbf{R}, u, \mu, \theta\}$,

$$(\mathbf{r}, \mathbf{v}) = \mathcal{T}(\mathbf{R}, u, \mu, \theta, t),$$

such that

- \mathcal{T} is expressed as a power series in ε .
- \mathbf{R} is the position of the gyrocenter, and u, μ, θ coincide with the parallel velocity, magnetic moment, and gyrophase to lowest order.
- The transformed phase-space Lagrangian, $\overline{\mathcal{L}}$, is gyrophase-independent.
- μ is an adiabatic invariant.

Doing this up to second-order leads to the following phase-space Lagrangian:

$$\overline{\mathcal{L}} = \left[\frac{1}{\varepsilon} \mathbf{A}(\mathbf{R}) + u \hat{\mathbf{b}}(\mathbf{R}) - \varepsilon \mu \mathbf{K}(\mathbf{R}) \right] \cdot \frac{d\mathbf{R}}{dt} - \varepsilon \mu \frac{d\theta}{dt} - \overline{H},$$

with

$$\mathbf{K}(\mathbf{R}) = \frac{1}{2} \hat{\mathbf{b}}(\mathbf{R}) \hat{\mathbf{b}}(\mathbf{R}) \cdot \nabla_{\mathbf{R}} \times \hat{\mathbf{b}}(\mathbf{R}) - \nabla_{\mathbf{R}} \hat{\mathbf{e}}_2(\mathbf{R}) \cdot \hat{\mathbf{e}}_1(\mathbf{R}),$$

where $\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2$ are unit vectors such that at every point $\{\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \hat{\mathbf{b}}\}$ is an orthonormal set and $\hat{\mathbf{e}}_1 \times \hat{\mathbf{e}}_2 = \hat{\mathbf{b}}$. In order to give the complete and explicit expression for the Hamiltonian to second-order in ε it is useful to define

$$\phi(\mathbf{R}, \mu, \theta, t) := \varphi(\mathbf{R} + \varepsilon \rho(\mathbf{R}, \mu, \theta), t),$$

and the average over θ , denoted by $\langle \dots \rangle$,

$$\langle \dots \rangle := \frac{1}{2\pi} \int_0^{2\pi} (\dots) d\theta.$$

$\tilde{\phi}$ will stand for the gyrophase-dependent piece of the electrostatic potential, i.e.

$$\tilde{\phi}(\mathbf{R}, \mu, \theta, t) := \phi(\mathbf{R}, \mu, \theta, t) - \langle \phi \rangle(\mathbf{R}, \mu, t),$$

and

$$\tilde{\Phi} := \int^{\theta} \tilde{\phi} d\theta,$$

with the choice $\langle \tilde{\Phi} \rangle = 0$. Finally,

$$\overline{H} = \frac{1}{2} u^2 + \mu B + \Lambda \varepsilon \langle \phi \rangle + \varepsilon^2 \left(\Lambda^2 \Psi_{\phi}^{(2)} + \Lambda \Psi_{\phi B}^{(2)} + \Psi_B^{(2)} \right), \quad (2)$$

where

$$\begin{aligned}\Psi_{\phi}^{(2)} &= \frac{1}{2\lambda^2 B^2} \left\langle \nabla_{(\mathbf{R}_\perp/\lambda\epsilon)} \tilde{\Phi} \cdot \left(\hat{\mathbf{b}} \times \nabla_{(\mathbf{R}_\perp/\lambda\epsilon)} \tilde{\phi} \right) \right\rangle \\ &- \frac{1}{2\lambda^2 B} \frac{\partial \langle \tilde{\phi}^2 \rangle}{\partial(\mu/\lambda^2)},\end{aligned}\quad (3)$$

$$\begin{aligned}\Psi_{\phi B}^{(2)} &= -\frac{u}{\lambda B} \left\langle \left(\nabla_{(\mathbf{R}_\perp/\lambda\epsilon)} \tilde{\phi} \times \hat{\mathbf{b}} \right) \cdot \nabla_{\mathbf{R}} \hat{\mathbf{b}} \cdot \rho \right\rangle \\ &- \frac{\mu}{2\lambda B^2} \nabla_{\mathbf{R}} B \cdot \nabla_{(\mathbf{R}_\perp/\lambda\epsilon)} \langle \phi \rangle - \frac{1}{B} \nabla_{\mathbf{R}} B \cdot \langle \tilde{\phi} \rho \rangle \\ &- \frac{1}{4\lambda B} \left\langle \nabla_{(\mathbf{R}_\perp/\lambda\epsilon)} \tilde{\phi} \cdot [\rho \rho - (\rho \times \hat{\mathbf{b}})(\rho \times \hat{\mathbf{b}})] \cdot \nabla_{\mathbf{R}} B \right\rangle \\ &- \frac{u^2}{\lambda^2 B} \hat{\mathbf{b}} \cdot \nabla_{\mathbf{R}} \hat{\mathbf{b}} \cdot \left\langle \frac{\partial \tilde{\phi}}{\partial(\mu/\lambda^2)} \rho \right\rangle - \frac{u^2}{2\mu B} \hat{\mathbf{b}} \cdot \nabla_{\mathbf{R}} \hat{\mathbf{b}} \cdot \langle \tilde{\phi} \rho \rangle \\ &+ \frac{u}{4\lambda^2} \nabla_{\mathbf{R}} \hat{\mathbf{b}} : \left\langle \frac{\partial \tilde{\phi}}{\partial(\mu/\lambda^2)} [\rho(\rho \times \hat{\mathbf{b}}) + (\rho \times \hat{\mathbf{b}})\rho] \right\rangle \\ &+ \frac{u}{4\mu} \nabla_{\mathbf{R}} \hat{\mathbf{b}} : \left\langle \tilde{\phi} [\rho(\rho \times \hat{\mathbf{b}}) + (\rho \times \hat{\mathbf{b}})\rho] \right\rangle,\end{aligned}\quad (4)$$

$$\begin{aligned}\Psi_B^{(2)} &= -\frac{3u^2\mu}{2B^2} \hat{\mathbf{b}} \cdot \nabla_{\mathbf{R}} \hat{\mathbf{b}} \cdot \nabla_{\mathbf{R}} B + \frac{\mu^2}{4B} (\overset{\leftrightarrow}{\mathbf{I}} - \hat{\mathbf{b}}\hat{\mathbf{b}}) : \nabla_{\mathbf{R}} \nabla_{\mathbf{R}} \mathbf{B} \cdot \hat{\mathbf{b}} \\ &+ \left(\frac{\mu^2}{8} - \frac{u^2\mu}{4B} \right) \nabla_{\mathbf{R}} \hat{\mathbf{b}} : (\nabla_{\mathbf{R}} \hat{\mathbf{b}})^T - \left(\frac{3u^2\mu}{8B} + \frac{\mu^2}{16} \right) (\nabla_{\mathbf{R}} \cdot \hat{\mathbf{b}})^2 \\ &+ \left(\frac{3u^2\mu}{2B} - \frac{u^4}{2B^2} \right) |\hat{\mathbf{b}} \cdot \nabla_{\mathbf{R}} \hat{\mathbf{b}}|^2 + \left(\frac{u^2\mu}{8B} - \frac{\mu^2}{16} \right) (\hat{\mathbf{b}} \cdot \nabla_{\mathbf{R}} \times \hat{\mathbf{b}})^2 \\ &- \frac{3\mu^2}{4B^2} |\nabla_{\mathbf{R}\perp} B|^2 + \frac{u^2\mu}{2B} \nabla_{\mathbf{R}} \hat{\mathbf{b}} : \nabla_{\mathbf{R}} \hat{\mathbf{b}},\end{aligned}\quad (5)$$

We point out that $\Psi_{\phi}^{(2)}$ is the term included in the standard derivations of gyrokinetics. It gives an $O(\epsilon^2)$ contribution because it is quadratic in the fluctuating electrostatic potential. $\Psi_{\phi B}^{(2)}$ (combining geometry and turbulence) and $\Psi_B^{(2)}$ (purely geometrical) are the new terms.

References

- [1] A. J. Brizard and T. S. Hahm, Rev. Mod. Phys. **79**, 421 (2007).
- [2] F. I. Parra and I. Calvo, PPCF **53**, 045001 (2011).
- [3] F. I. Parra and P. J. Catto, PPCF **52**, 059801 (2010).
- [4] F. I. Parra and P. J. Catto, Phys. Plasmas **17**, 056106 (2010).