38" EPS Conference on Plasma Physics (2011) P1.126

Second-order electrostatic gyrokinetics in general magnetic geometry and

its relevance for toroidal momentum transport in tokamaks

Ivan Calvo! and Felix I. Parra?

U Laboratorio Nacional de Fusion, Asociacion EURATOM-CIEMAT, 28040 Madrid, Spain
2 Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3NP, UK

Introduction

Gyrokinetic theory is the appropriate tool for the kinetic study of microturbulence in fusion
plasmas. Let us restrict ourselves to time-independent magnetic fields and collisionless plasmas.
Strictly, the set of equations determining the behavior of such a system consists of the Vlasov
and Poisson’s equations (the latter usually approximated by the quasineutrality equation). How-
ever, the time-scale of microturbulence is much longer than the inverse of the gyrofrequency,
the time-scale of the gyration of a charged particle around a magnetic field line. It is there-
fore desirable to eliminate this fast gyromotion in a rigorous way and consequently save much
computational time when solving the equations.

Gyrokinetics gives a systematic way to average over the gyromotion (or equivalently over
the gyrophase, the degree of freedom associated to it) without losing the effect of non-zero
gyroradius based on the smallness of &, the ratio of the gyroradius and the characteristic length
of variation of the magnetic field. In the phase-space Lagrangian formalism the objective is to
find a change of variables as an asymptotic series in powers of € that makes the Lagrangian
independent of the gyrophase. This, of course, requires certain assumptions on the size of the

quantities entering the theory, that in the so-called low-flow ordering can be summarized as

follows:
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where B is a time-independent magnetic field, L the typical macroscopic length, ¢ the electro-
static potential, p = v, /Q, v;, Q = ZeB/(Mc), Ze, and M the typical gyroradius, thermal speed,
gyrofrequency, charge and mass of the species of interest, and e and ¢ are the magnitude of the
electron charge and the speed of light.

The standard derivation of the gyrokinetic equations in a non-uniform magnetic field is only
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accurate to first order in € with the ordering (1). The reason is that two independent expansions
are usually performed (see, for example, the review paper [1]). First ¢ = 0 is set and an expan-
sion in € to first order is carried out. Then, the electrostatic potential is switched on an expansion
in €y ~ Ze@/(Mv?) is continued up to second order. However, according to (1), &, ~ € and the
customary derivations miss terms of order €€, and €2,

In this conference contribution we give the complete result to second order [2], summarized
by the full second-order gyrokinetic Hamiltonian (2), (3), (4), (5), clearly exhibiting the new
terms obtained from an expansion respecting the ordering (1). The motivation to tackle the
second-order computation is found in recent results by Parra and Catto showing that the cor-
rect calculation of transport of toroidal angular momentum in tokamaks requires knowledge of

second-order pieces of the distribution function and the electrostatic potential [3, 4].

Phase-space Lagrangian and implementation of the gyrokinetic ordering

The phase-space Lagrangian of a charged particle in a time-independent magnetic field reads
Z d
L(r,v,k,v,t) = [—eA(r) +MVj| . d—: —H(r,v,t),
c

where the Hamiltonian is

1
H(r,v,1) = EMv2 +Ze(r,1).

Introduce dimensionless variables adapted to the gyrokinetic ordering (1),
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Here, T,9 is the characteristic electron temperature. We assume that the characteristic length
scale of the electrostatic potencial in the direction perpendicular to the magnetic field is the
sound gyroradius, ps = ¢s/Q;, and the characteristic time scale is L/cy, being ¢ is the sound

speed and €2; the typical ion gyrofrequency. Concretely,

A

b(f)-Vi¢ ~O(1), Vi ¢ ~0(1/(Ag)),

where

l:ps/p, A:ZTeok/To.

From now on we work in dimensionless variables but omit hats™.
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Second-order gyrokinetic phase-space Lagrangian
The program of gyrokinetics can be synthesized by saying that one looks for a transformation

from {r,v} to new phase-space coordinates (gyrokinetic coordinates) {R,u,L,0},
(r,v) = 7(R,u,u,0,t),
such that
e 7 is expressed as a power series in €.

e R is the position of the gyrocenter, and u, i, 6 coincide with the parallel velocity, mag-

netic moment, and gyrophase to lowest order.
e The transformed phase-space Lagrangian, .Z, is gyrophase-independent.
e [ is an adiabatic invariant.

Doing this up to second-order leads to the following phase-space Lagrangian:

— 1 .\ dR do
Z=|-AR b(R)—euK(R)|-— —eu——H
“A(R)+ub(R) — euK(R) | - = —en " — 1.
with
| . R
K(R) = Eb(Rﬂ)(R) . VR X b(R) — VRez(R) - €1 (R),

where &;,€, are unit vectors such that at every point {€;,&,,b} is an orthonormal set and &; x

&, = b. In order to give the complete and explicit expression for the Hamiltonian to second-order

in € it is useful to define
¢(R,1,0,1) := p(R+ep(R,u,0),1),
and the average over 6, denoted by (... ),
1 2n
ce) = — ...)do.
()= g [T

5 will stand for the gyrophase-dependent piece of the electrostatic potential, i.e.

é(Ra.u? 97t) = (P(R,‘Ll, 9,1’) - <¢>(R,‘Ll,f),

and
~ 6 ~
&= / 646,
with the choice (®) = 0. Finally,

I
H = Sul+uB+Ae(g)+e? (A0 + AP +7y)) @)
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where
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We point out that ‘I’gf) is the term included in the standard derivations of gyrokinetics. It

gives an O(&?) contribution because it is quadratic in the fluctuating electrostatic potential.

¢ B (combmmg geometry and turbulence) and ‘P (purely geometrical) are the new terms.
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