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Introduction

Ballooning theory [1] has proven to be a useful tool in the study of high toroidal mode num-

ber,n, instabilities. The separation of scales between rationalsurface spacing and equilibrium

length scales that exists at highn is exploited to perform an expansion in the small parameter,

1/nq′, whereq′ is related to magnetic shear. In leading order ballooning theory, captured by

local gyrokinetic flux tube simulations, the effects of radial profile variations are neglected, re-

sulting in a reduction from the full 2D eigenmode problem to a1D problem in ballooning space

(distance along field line). This leading order theory introduces the ballooning angle,θ0, as a

free parameter which is typically selected to maximise the growth rate, usually atθ0 = 0 corre-

sponding to modes ballooning on the outboard midplane. Global gyrokinetic simulations, which

retain profile variations, have shown that linearly unstable toroidal drift modes, such as the ion

temperature gradient (ITG) mode do not always peak at the outboard midplane [2], indicating

that profile variations are sometimes important andθ0 = 0 isn’t always the correct choice.

In this work the role of profile variations in determining theglobal mode structure is investi-

gated. Full global (2D) solutions of a reduced (fluid) gyrokinetic ITG model are compared with

solutions of the local (1D) ballooning transformed model. Higher order theory [3] indicates two

classes of mode are expected, depending on equilibrium profiles, and both cases are found in

global calculations. A procedure for obtaining the global mode structure and growth rate using

only solutions of the local model is discussed and demonstrated. Finally the effect of linearly

sheared flows is briefly investigated in the limit of low shearing rates.

Model equations

A simple gyrokinetic ITG model, used in the literature (e.g.see [4]), is given in Eq. 1[
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with φ the perturbed potential,kθ the poloidal wavenumber,ρs the ion Larmor radius at sound

velocity, safety factorq, R the major radius,Ω the complex mode frequency normalised to the

electron diamagnetic frequency andηi = Ln/LT the ratio of density and temperature length

scales. It is advantageous to Fourier decompose in poloidalmode number,m;

φ (x,θ) = ∑
m

um(x)exp(imθ) (2)

The global 2D model in Eq. 1 reduces to a set of coupled equations for the radial functions,

um(x). In the limit n→ ∞ the rational surface spacing reduces to 0 whilst equilibrium scale

lengths remain unchanged. The solution on each rational surface will then be identical, meaning

eachum can be represented in terms of a generic functionu0:

um(x) = u0
(
x−m/nq′

)
exp(imθ0) (3)

The ballooning parameter,θ0, contains amplitude and phase information due to finite radial

variations. Fourier transformingu0 using:

u0(x) = (2π)−1
∫ ∞

−∞
ν (η)exp

(
−inq′xη

)
dη (4)

and substituting into Eq. 1 (equivalent to applying the ballooning transform) leads to the lowest

order (local) ballooning representation of the model as given in Eq. 5, with magnetic shears,

which can be solved for the local mode frequencyΩ0(x,θ0) and the eigenfunctionν (η) for a

givenx andθ0.[
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ν (η) = 0 (5)

Two codes have been developed: a 2D code solves eqn. 1 (forφ andΩ), and a 1D code solves

eqn. 5 (forν (η) andΩ0). Thex dependence ofΩ0 arises from profile variations.

Higher order theory and global mode structure

In higher order ballooning theory profile effects are retained. These restrict the choice ofx

andθ0 allowed in Eq. 5. Two distinct classes of mode are then found,known asisolatedand

generalmodes [3].Isolatedmodes are only valid at a stationary point inΩ0 whereasgeneral

modes can be found everywhere else.
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Figure 1: Contour of perturbed potential forisolatedmode (a) and forgeneralmode (b)
obtained using quadratic and linearηi profiles respectively.
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In the simple model used here the profile shape ofΩ0 matches that of the profile ofηi, which

is the ITG drive term. By selecting a peaked quadraticηi profile, a stationary point inΩ0 is

obtained andisolatedmodes are found by the 2D code. Switching to a linearηi profile gives

only generalmodes, as there is no longer a stationary point inΩ0.

Calculations have been performed withkθ ρs = 0.3,n= 50, 65≤m≤ 115,s= 2 andηi given

by 5−312.5x2 or 5−24x. Figure 1 shows the global mode structure for both classes ofmode.

The isolatedmode peaks at the outboard midplane and has the largest possible growth rate,γ,

whereas thegeneralmode peaks at the top of the plasma with a reducedγ. The 1D code’sγ0

agrees with that found by the 2D code ifθ0 = 0 is used for theisolatedcase and if one averages

overθ0 for thegeneralmode (as predicted in [3]).

Converting from 1D to 2D
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Figure 2: Contour of real component

of Ω0(x,θ0) for quadratic (a) and
linear (b)ηi profiles.

The local model of eqn. 5 neglects profile effects but

if an expression forθ0 is knownu0(x) can be obtained

from the solution of eqns. 4 and 5 and the full 2D

global mode structure,φ , can be determined.θ0 can be

obtained by using higher order ballooning theory to in-

vert model expressions forΩ0(x,θ0) [3]. Expressions

for isolatedandgeneralmodes are given in eqns. 6 and

7 respectively, obtained by inverting the simple mod-

els in eqns. 8 and eqn. 9. For given equilibrium pro-

files the parametersλ andε can be obtained by fitting

to Ω0(x,θ0) derived from the 1D code. Figure 2 shows

Ω0(x,θ0) for the quadratic and linearηi profiles de-

scribed above. The 1D solution was obtained at eachx

andθ0 value from eqn. 5 to provideΩ0(x,θ0).

θ0≈ cos−1(
1−x2λ/ε

)
(6)

θ0≈ cos−1(−xλ/ε) (7)

Ω0(x,θ0) = Ω00+λx2 + ε cos(θ0) (8)

Ω0(x,θ0) = Ω00+λx+ ε cos(θ0) (9)
The global mode structure reconstructed following this procedure using only results from the

1D code shows excellent agreement with the mode structures obtained from the global code

shown in figure 1.

The effect of sheared flows

The effect of sheared plasma flows can be incorporated into the global model by introducing

a radially dependent Doppler shift toΩ. This introduces an additional equilibrium profile. Fig-
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ure 3 showsγ for both classes of mode, with and without sheared flows, as the strength of the

coupling term in eqn. 1 is increased (equivalent to going from a cylindrical system to the large

aspect ratio torus used above). The growth rate of theisolatedmode is reduced by flow shear

to the cylindrical value whilst thegeneralmode’s growth rate is always at the cylindrical value.

This effect on theisolatedmode can be attributed to the removal of the stationary pointin Ω0

by the linear Doppler shift, keeping ageneralmode and prohibiting the formation of anisolated

mode.

Figure 3: Growth rate as a function
of normalised coupling term,χ,

(where 2Ln/R→ 2χLn/R in eqn. 1)
for isolatedandgeneralmodes
with and without sheared flow.

Conclusions

The global mode structure of a simple ITG mode has

been investigated for different equilibrium radial profiles.

Two classes of mode are obtained, in agreement with higher

order ballooning theory [3]. In our model equilibriumiso-

latedandgeneralmodes have similar global mode struc-

ture, butisolatedmodes peak at the outboard midplane

andgeneralmodes peak atθ = π/2. Solutions to the cor-

responding local model where also investigated. Agree-

ment is found between the global and local growth rates

for both classes of mode provided the correct ballooning angle, θ0, is used in each case. A pro-

cedure for obtaining the full global mode structure only from solutions of the local model was

illustrated, giving excellent agreement with the full global results. Weak linearly sheared flows

were found to have a strong stablising effect on theisolatedmode growth rate but no effect on

thegeneralmode. This can be attributed to sheared flow destroying the conditions required to

obtainisolatedmodes. The proper consideration of profile effects, neglected in local analyses,

can be important in determining the expected linear growth rates. The effect for non-linear stud-

ies remains an area of further work.
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