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We consider the distribution function in(x,v) space for a one-dimensional beam–plasma

system initially uniform spatially ; the beam corresponds to a bump on the tail of the veloc-

ity distribution. To describe the saturation of the weak warm beam–plasma instability where

resonant wave–particle interaction plays a role, we solve the Vlasov–wave equations [5]

∂t f +v∂x f + εRe
(

i
M

∑
m=1

βmζmei(kmx−ωmt)
)

∂v f = 0, (1)

ζ̇m = iε
βm

km

1
L

∫ L

0

∫Re−i(kmx−ωmt) f (t,x,v)dvdx, (2)

whereζm is the complex envelope for wavem, with wavenumberkm, phase velocityvm= ωm/km

and pulsationωm = ωp

√
1+3k2

mλ 2
D. The couplingε =

√
2η/(1+η) is determined by the ratio

η = nb/np of beam densitynb to plasma densitynp. Let ∆vm = |vm+1−vm−1|/2,u0 = min(vm),

u1 = max(vm) ; ∆vspec= u1−u0 is the phase velocity width of the wave spectrum.

The saturation of the beam–plasma system was first predictedtheoretically [6, 4] by consid-

ering the wave–particle interaction as perturbative and neglecting all mode couplings in (1)-(2),

except for their effect on the space averaged distribution function f̄ . This leads to the quasilinear

(QL) equations couplinḡf (t,v) and the waves power spectrumψ(t,v)

∂t f̄ = ∂v(DQL(t,v)∂v f̄ ) and ∂tψ = 2γL(t,v)ψ, (3)

whereγL(t,v) = π
2

η
1+η

1
k2 ∂v f̄ (t,v) andDQL(t,v) = π η

1+η
1
k2 ψ(t,v) are the instantaneous Landau

growth rate and QL diffusion coefficient, whileψ(vm)∆vm = km|ζm|2/2.

Note that (3) satisfies the local momentum conservation law,∂t( f̄ −∂vψ) = 0, which follows

for (1)-(2) in the dense spectrum limit∆vϕ → 0 from the locality inv of wave–particle inter-

action [5]. This conservation law holds even if bothγL andDQL are rescaled by an arbitrary

fuctionα(t,v) ; thus its validity does not warrant the validity of (3).

For small enough initial waves amplitudes and a correspondingly small enough∆vϕ (typical

∆vm), the initial QL regime (regime IQL) is characterised byµ ≪ 1,KD ≪ 1 andB≫ 1, where
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Figure 1: (left) Evolution of nonlinearity parametersµ (continued green line) andsov (dotted
blue line). (right) Evolution of wave energy growth rateγ(t) = (2Ew(t))−1dEw(t)/dt, where Ew(t) =
∑M

m=10|ζ (t,vm)|2. Average Landau growth rates areγL,1(t) = (∑M
m=10∆vm)−1 ∑M

m=10γL(t,vm)∆vm and γL,2(t) =
(∑M

m=10|ζ (t,vm)|2)−1 ∑M
m=10γL(t,vm)|ζ (t,vm)|2. The initial value isγL(0) = 10−3.

µ = (γLτD)−1, KD = τac/τD is a Kubo number, andB = τD/τdiscr = 8π−1/3s−4/3
ov is linked to

the resonance overlap parametersov = 2∆vtrap/∆vϕ . Here∆vtrap is the typical trapping width

of a wave. The Dupree timeτD = (k2DQL)−1/3 defines the particle autocorrelation time, while

τac = (k∆vspec)−1 is the wave autocorrelation time, andτdiscr = (k∆vϕ)−1 is the time it takes a

resonant particle to resolve the separate Doppler frequencies of the modes.

For µ ≪ 1, particles have a quasi-ballistic motion so that the integration of perturbations

along the unperturbed characteristic curves, leading to the QL equations (3), is a valid ap-

proximation. Nevertheless there is a crossover to the strongly nonlinear regimeµ ≫ 1 before

a plateau can form in̄f . However, though the QL near-ballistic assumption ceases to hold, the

central question about the validity of QL equations per se remains open in the strongly nonlinear

chaotic regime, denoted SNL and characterized byµ ≫ 1, KD ≪ 1 andB≪ 1. [1]

We prove theoretically that the diffusive picture, with coefficient DQL, applies in the chaotic

regime SNL to the nonlinear self-consistent wave–particleinteraction, by showing that, when

the plateau has formed inf , the source term in (2) vanishes, so that mode coupling becomes

negligible, the waves complex amplitudes are quenched, andthe particle dynamics lands in a

non-self-consistent stage where (as we show below) the wavespectrum meets the assumptions

on which the particle velocity diffusion process rests [5] :independent phases and a non-peaked

power spectrum.

Numerically, our self-consistent Vlasov simulations start from regime IQL to reach regime

SNL, passing through an intermediate (nonlinear) regime INL – whereµ & 1, KD ≪ 1 and

B ≃ 1 – where weak renormalization effects and strong nonlinearwave coupling are expected.

In our first set of simulations, the initialf0 is such that∂vγL(0,v) = 0. Initial wave ampli-

tudes are small while initial phases are drawn randomly, independently, uniformly on the circle.
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Figure 2:(left) Final diffusion coefficient for a single realization(continued grey line), windowed average over
11 nearby velocities (continued green line), ensemble average of window average (dotted blue line) and momentum
conservation law prediction (dashed red line). (right) Scaled quadratic moments of particle velocity deviation. (FP):
Fokker-Planck equation, (PT): 100 test particles in 13 realizations of the wave complex amplitudesζm(T).

The code was validated in the linear phase by checking the numerical versus theoretical wave

growth, and in the nonlinear phase by controlling conservation laws (mass, momentum, energy,

L1-norm, ...) [1]. Figure 1 shows that the theoretical linear growth of the waves coincides per-

fectly with the numerical one untilt = 2000ω−1
p = 2/γL(0), ensuring an initial linear stage

whereµ ≪ 1. For 2000ω−1
p < t < 7000ω−1

p we observe an intermediate regime where the

waves growth departs from Landau’s linear approximation : as noted by [3], mode coupling is

present, and this intermediate stage corresponds to the transition regime INL. A striking fact is

the growth rate enhancement by a factor greater than 1.2 for 4000ω−1
p < t < 7000ω−1

p , reach-

ing 1.36 att = 6731ω−1
p (µ ≃ 56, sov ≃ 20), confirming the saturation value emerging in [3].

After it increased up to 1.36, this enhancement factor decreases, which means that theenhance-

ment process breaks down in the INL regime when resonance overlap becomes large enough, as

was also observed for the supra-QL behaviour of the diffusion coefficient in non-self-consistent

dynamics [2, 5]. Nonlinear saturation is reached fort > 7000ω−1
p , with f plateau set up by

t = 8400ω−1
p .

To characterize the SNL plateau regime, we performed a second set of simulations, with a

smaller∆vϕ and final∆vD. In figure 2-(left) we analyse the velocity profile of the SNL diffusion

coefficient. The smooth red curve is the robust prediction from integrating the local momen-

tum conservation law∂t( f̄ −∂vψ) = 0 with initial and boundary conditions∂vψ(0,v) = 0 and

ψ(t,u0) = 0. The jagged grey line is the result for a single realizationof initial data. A mov-

ing average over 2Lavg+ 1 nearby waves smoothes this profile, as shown by the green line

for Lavg = 5 . 1/B. Averaging over a statistical ensemble (R = 13 realizations of the same

f0 and |ζm(0)|2, with randomϕm(0)) shows excellent agreement (blue line) with the (almost

identical, red) conservation law prediction for the finalDQL andψ. At the middlevc ≃ 0.57
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of the waves phase velocity range, and at timeT = 9 105ω−1
p in the plateau regime, the val-

ues〈sov〉R(T,vc)≃ 15,B ≃ 0.15,〈K−1
D 〉R(T,vc)≃ 110, and〈µ〉R(T,vc)≃ 105 confirm that the

system is in regime SNL where chaotic diffusion applies.

We assess the validity of the diffusive model for particle motion in the plateau regime, by

observing the spreading ofN = 100 test particles for each of theR = 13 realizations atT =

9 105ω−1
p . These particle trajectories are obtained from their equations of motion with fixedζm.

We compare the moments of particle velocities with those of the solution to the Fokker-Planck

equation (3), using theDQL(T,v) displayed in figure 2-(left), with an initial Dirac distribution at

velocity vc. Figure 2-(right) shows the good agreement of moments. The departure of both PT

and FP from the straight line shows that particles are chaotically transported through the plateau

and may hit the KAM boundaries of the chaotic(x,v) domain.

Figure 3:Distribution of difference between fi-

nal and initial phase of the waves.

For QL estimates to hold, the wave spectrum

must satisfy a modulus and a phase assumption.

The first one requires the wave power spectrum not

to have holes wider than about∆vD = (kτD)−1 =

∆vϕ/B. Figure 2-(left) shows that, even if nearby

waves have intensities strongly inhomogeneous

with respect to velocity, their averages over a range

Lavg∆vϕ . ∆vD (green line) make bothψ andDQL

appear smooth enough and close to the conserva-

tion law prediction. Therefore the square modulus

requirement, absence of holes wider than∆vD, is met. The second requirement is randomness

of wave phases. In figure 3, the statistical distribution of difference between final and initial

phase appears coherent, which means thatϕm(0) and ϕm(T) are strongly correlated. As our

random initial phases are independent, we may expect near-independence for final ones. In a

way, the transition to chaos turns out to be orderly.

The fulfillment of both conditions onζm(T) explains the agreement in figure 2-(right).
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