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We consider the distribution function ifx,v) space for a one-dimensional beam-plasma
system initially uniform spatially ; the beam correspondsitboump on the tail of the veloc-
ity distribution. To describe the saturation of the weak wdream—plasma instability where

resonant wave—particle interaction plays a role, we sdlgetlasov—wave equations [5]

atf+vaxf+£Re< z B (< “*“‘)61‘—0 @)

m—IS——/ / e (k=) £ (t % v) dvalx, (2)

wherel, is the complex envelope for wawe with wavenumbeky,, phase velocitym = twn/kn
and pulsationu, = ay/1+ 3k2A3. The couplinge = /21 /(1+ n) is determined by the ratio
n = np/np of beam densityy, to plasma density,. Let AV = [Vin-1 — Vin-1//2, Ug = MiN(Vin),
U1 = mMaX(Vm) ; AVspec= U1 — Ug is the phase velocity width of the wave spectrum.

The saturation of the beam—plasma system was first predivtedetically [6, 4] by consid-
ering the wave—patrticle interaction as perturbative amdenting all mode couplings in (1)-(2),
except for their effect on the space averaged distributiootion f. This leads to the guasilinear

(QL) equations couplingj_(t,v) and the waves power spectrupit, v)

&f = (Dol (t, V), f) and ay = 2y (t,v)y, (3)

wherey (t,v) = gﬁk—lz af(t,v) andDq (t,v) = nﬁk—lzw(t,v) are the instantaneous Landau
growth rate and QL diffusion coefficient, whilf(Vim)AVin = Km|m|?/2.

Note that (3) satisfies the local momentum conservationd’ﬁ(vf/_,— oy) = 0, which follows
for (1)-(2) in the dense spectrum limMvy — O from the locality inv of wave—particle inter-
action [5]. This conservation law holds even if bgthandDqg_ are rescaled by an arbitrary
fuctiona(t,v) ; thus its validity does not warrant the validity of (3).

For small enough initial waves amplitudes and a correspmtylsmall enouglftvy (typical

Avp), the initial QL regime (regime IQL) is characterised oy« 1, Kp < 1 and% > 1, where
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Figure 1: (left) Evolution of nonlinearity parametergu (continued green line) ands, (dotted
blue line). (right) Evolution of wave energy growth ratgt) = (2E,(t)) " dEw(t)/dt, where Ey(t) =
M _0lZ(t,vm)|?. Average Landau growth rates aygi(t) = (TM_10AVm) 1 SM_ oy (t, vim)Avim and y o(t) =
(SN 012t vm) Pt S M oW (t, Vim) | (t, Vim) 2. The initial value isy (0) = 103,

U= (1), Kp = Tac/Tp is @ Kubo number, ané® = 1p / Tgiscr = 8 1/35,4/% is linked to
the resonance overlap parametgr = 2Avirap/Avy. Here Avyrap is the typical trapping width
of a wave. The Dupree timg, = (kZDQL)*1/3 defines the particle autocorrelation time, while
Tac= (kAvspec)*1 is the wave autocorrelation time, angscr = (kAvd,)*1 is the time it takes a
resonant particle to resolve the separate Doppler fregeentthe modes.

For u < 1, particles have a quasi-ballistic motion so that the irstegn of perturbations
along the unperturbed characteristic curves, leading ¢oQh equations (3), is a valid ap-
proximation. Nevertheless there is a crossover to the glyaronlinear regimeu > 1 before
a plateau can form ifi. However, though the QL near-ballistic assumption ceasésld, the
central question about the validity of QL equations per sgaias open in the strongly nonlinear
chaotic regime, denoted SNL and characterizegiby 1,Kp < 1 and# < 1. [1]

We prove theoretically that the diffusive picture, with ffaent Dg| , applies in the chaotic
regime SNL to the nonlinear self-consistent wave—partidieraction, by showing that, when
the plateau has formed ifh, the source term in (2) vanishes, so that mode coupling besom
negligible, the waves complex amplitudes are quenchedttagarticle dynamics lands in a
non-self-consistent stage where (as we show below) the s@@&rum meets the assumptions
on which the particle velocity diffusion process rests [Bldependent phases and a non-peaked
power spectrum.

Numerically, our self-consistent Vlasov simulations sfesm regime IQL to reach regime
SNL, passing through an intermediate (nonlinear) regime Nvhereuy 2> 1, Kp < 1 and
2 ~ 1 — where weak renormalization effects and strong nonlin@ae coupling are expected.

In our first set of simulations, the initiefy is such that,y (0,v) = 0. Initial wave ampli-
tudes are small while initial phases are drawn randomlgpetidently, uniformly on the circle.
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Figure 2:(left) Final diffusion coefficient for a single realizati¢oontinued grey line), windowed average over
11 nearby velocities (continued green line), ensembles@ecof window average (dotted blue line) and momentum
conservation law prediction (dashed red line). (right)l&guadratic moments of particle velocity deviation. (FP)
Fokker-Planck equation, (PT): 100 test particles in 13za#ibns of the wave complex amplitudés(T).

The code was validated in the linear phase by checking theerioah versus theoretical wave
growth, and in the nonlinear phase by controlling consewadaws (mass, momentum, energy,
L-norm, ...) [1]. Figure 1 shows that the theoretical lineavgh of the waves coincides per-
fectly with the numerical one unttl = ZOOpr—l = 2/y.(0), ensuring an initial linear stage
where < 1. For 200@9,* <t < 700Q;* we observe an intermediate regime where the
waves growth departs from Landau’s linear approximatiosin@ted by [3], mode coupling is
present, and this intermediate stage corresponds to tingttoen regime INL. A striking fact is
the growth rate enhancement by a factor greater tharmot 400(1051 <t< 700Cb.)p_1, reach-
ing 1.36 att = 6731%‘1 (1 ~ 56, soy ~ 20), confirming the saturation value emerging in [3].
After it increased up t0.B86, this enhancement factor decreases, which means thatlhlaace-
ment process breaks down in the INL regime when resonanckapueecomes large enough, as
was also observed for the supra-QL behaviour of the diffusaefficient in non-self-consistent
dynamics [2, 5]. Nonlinear saturation is reached tfor 7000&)51, with f plateau set up by
t = 8400wy, *.

To characterize the SNL plateau regime, we performed a seseinof simulations, with a
smallerAvy and finalAvp. In figure 2-(left) we analyse the velocity profile of the SNiflsion
coefficient. The smooth red curve is the robust predictiomfintegrating the local momen-
tum conservation lawd (f — d,y) = 0 with initial and boundary conditiond,(0,v) = 0 and
Y(t,up) = 0. The jagged grey line is the result for a single realizatbmitial data. A mov-
ing average over l2,q+ 1 nearby waves smoothes this profile, as shown by the green lin
for Lavyg= 5 < 1/4. Averaging over a statistical ensembR = 13 realizations of the same
fo and|Zm(0)|%, with random¢m(0)) shows excellent agreement (blue line) with the (almost

identical, red) conservation law prediction for the fifta). and . At the middlev, ~ 0.57
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of the waves phase velocity range, and at time- 9 105w|0—1 in the plateau regime, the val-
ues(Sov)R(T,Ve) = 15, 2 =~ 0.15, (K51 )Rr(T, Ve) =~ 110, and(p)r(T, V) =~ 10° confirm that the
system is in regime SNL where chaotic diffusion applies.

We assess the validity of the diffusive model for particletiom in the plateau regime, by
observing the spreading &f = 100 test particles for each of tlie= 13 realizations al =
9 1(?0051. These patrticle trajectories are obtained from their eqnatof motion with fixed,.
We compare the moments of particle velocities with thoséefsolution to the Fokker-Planck
equation (3), using thBg (T, V) displayed in figure 2-(left), with an initial Dirac distrikion at
velocity ve. Figure 2-(right) shows the good agreement of moments. Epardure of both PT
and FP from the straight line shows that particles are cbalbtitransported through the plateau
and may hit the KAM boundaries of the chaoficv) domain.

For QL estimates to hold, the wave spectrum
must satisfy a modulus and a phase assumption.
The first one requires the wave power spectrum not
to have holes wider than abotp = (k1p) ™t =

Avy /. Figure 2-(left) shows that, even if nearbys

er‘ﬁ waves
o o o

. .- . Q
waves have intensities strongly inhomogeneogs

with respect to velocity, their averages over a range

LavgAVp < Avp (green line) make botlp andDg
Figure 3:Distribution of difference between fi-
appear smooth enough and close to the consery.

a?-and initial phase of the waves.

tion law prediction. Therefore the square modulus

requirement, absence of holes wider tia, is met. The second requirement is randomness
of wave phases. In figure 3, the statistical distribution iffiecence between final and initial
phase appears coherent, which means ¢h#0) and ¢m(T) are strongly correlated. As our
random initial phases are independent, we may expect ndapeéndence for final ones. In a
way, the transition to chaos turns out to be orderly.

The fulfillment of both conditions of,(T) explains the agreement in figure 2-(right).
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