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An instability known as the beam-cyclotron instability [1] leads to the growth of a 

longitudinal wave. This occurs when a beam is incident on a magnetized plasma in a direction 

orthogonal to the magnetic field. Similarly, such instability can be found in Hall thrusters [2], 

where the electrons drift azimuthally due to an axial electric field and a crossed radial 

magnetic field. 

A study of the 2D dispersion relation (wave vector orthogonal to the magnetic field) has 

shown a mode which exists only for a discrete number of wave vectors [3]. However, recent 

measurements by collective light scattering have pointed out that the wave vector has a 

component in the magnetic field direction and that the associated dispersion relation is 

continuous. Accordingly, we propose here to study the dispersion relation in the 3D case. 

I. The dispersion relation 

The plasma at the exit of a Hall thruster may be approximated as collisionless, subject to a 

uniform magnetic field 0B


parallel to the z-axis and an uniform electric field 0E


parallel to the 

x-axis, in a slab geometry. The electrons are magnetized while the ions are not. In the case of 

a Maxwellian distribution for both ions and electrons, the kinetic theory leads to: 
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where  cethed vVkg  ,,,, is the Gordeev function [4]: 
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and  xZ  is the plasma dispersion function,  xZ   its derivative and  xI m  the modified 

Bessel functions of first kind. 
22and, yx kkkk   are the pulsation, the wave vector 

and the orthogonal wave vector respectively. 
0

0

B

E
V d  , vp, vthe and vthi are the drift, the beam 
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the electron thermal and the ion thermal velocities. DiD  and  are the electron and ion 

Debye length. 

In order to find the parameters of interest, equations (1) and (2) are normalized to λD, ωpi the 

ion plasma pulsation, and
i

eB

M

Tk
c s,0 the sound speed. 
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Thus, equations (1) and (2) transform to:  
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It is important from equations (3) and (4) to notice that TVv cedp
ˆandˆ,ˆ,ˆ  are the parameters of 

interest. Their consequence on ω will be studied in the next section after solving equation (3). 

II. Numerical solving of the dispersion relation 

Equation (3) is a rather complicated differential equation, not easily solved. However, an 

approximation can be made using results from collective scattering [2]. In fact, the pulsation 

has found to be ω=6.10
7
rad/s at maximum for a corresponding wave vector of 

ky=12000rad/m. On the other hand, the drift velocity and the electron cyclotron frequency are 

estimated to be Vd=7.10
5
m/s and ωce=3.10

9
rad/s. From these results, it is clear that kyVd » ω 

and |kyVd +mωce| » ω for m>0. Whereas for m<0, there is some ambiguity depending on the 

exact value of ky, Vd and ωce yet the approximation is still considered. Thus, the Gordeev 

function (4) is now constant in ω and equation (3) reduces to   cst xZ . The inverse Z' 

function can be found, by using a method which is not described here, allowing to calculate 

ω. Once calculating, ω is reintroduced in equation (4) and recalculated in order to increase the 

accuracy. 

Collective scattering measurements indicate a linear dependence of ω with k leading to a 

group velocity equal to 3410m/s, not far from the expected sound speed cs,0. In order to get 

such a curve, a large value of zk̂ is required and 0.03 will be taken. xk̂ can be set as null while 

yk̂ is the variable and usually lies between 0 and 1. The contribution of vp to the pulsation is a 

38th EPS Conference on Plasma Physics (2011) P2.013



 

Doppler shift and has a small effect on the growth rate. Consequently, this quantity does not 

affect the group velocity and is considered null.  

The dependence of the other parameters on the group velocity is studied by linearly fitting 

)ˆ(ˆ yk for  4.0;05.0ˆ yk . The fitted slope called vg is plotted versus the drift velocity Vd,num 

and for different ωce in Fig. 1. The ratio of the temperature T was fixed to 0.06. 

From Fig. 1, it is clear that vg is quite constant and close to unity with Vd and ωce. However, as 

the dispersion relation is less linear when ω increases to highest values of ωce=45-55, vg is 

seen to differ from one. Because of the linearity of the dispersion relation observed by 

collective scattering, values higher than 45 will be eliminated. Accordingly, the slope is found 

to be constant with the Vd and ωce and to only depend on T.  

 

 

 

The dependence of vg as a function of T is shown on Fig. 2. The ion temperature in the 

azimuthal direction was found [5] to be low (0.06eV) compare to the electron temperature 

(15eV). Thus, the ratio T is believed to be small and vg can be equal to 0.9×cs. Consequently, 

the ratio of the temperature can be calculated, knowing the experimental group velocity. In 

the next section, a model will be developed and should presumably allow determining the 

electron density ne. 

III. The analytical model: evanescent magnetic field and cold ions 

In the limit of a zero magnetic field, Schmitt [6] has demonstrated that equation (3) should be 

replaced by ξ Z(ξ), where .
the

d

v

V
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dkV
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  and 

ce

thekv
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tend to infinity while ξ remains constant. These limits are not fully justified but are a 

starting point. In addition, a more justified limit can be taken: the cold ions limit. In that case, 

the right hand side of equation (3) can be re-written as 
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. Taking these two limits 

into account, ω can be obtained analytically depending on the parameters Te, ne and Vd.  

Fig. 1. Variation of the group velocity vg with the drift velocity 

Vd for different electron cyclotron pulsation ωce. vg is constant 

with Vd and only differs from 1 for high ωce. 

Fig. 2. Variation of the group velocity vg with the 

parameter Tnum. In the thruster, Tnum is expected to be 

small, so vg=0.9cs. 
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Using this model, equation (3) can be fitted with 

Vd being the fitted parameter. T and vp are taken 

as null. kx and kz are set as null and 0.03 

respectively while ky vary from 0.1 to 1. The 

fitted value Vd,model is plotted versus the input 

values Vd,num on Fig. 3 for differen  values of                                                                          

ωce. Except for small values of ωce, Vd,model is not far from the first bisector, indicating that the 

model fits quite well equation (3). Hence, by un-normalizing the model, a fit of the 

experimental dispersion relation would allow to determinate Te and ne knowing Vd. 

IV. Comparison to experiment 

A dispersion relation obtained by collective 

scattering for the azimuthal mode is presented on 

Fig. 4. Its fit gives a group velocity of 3410 m/s.                                                                       

Therefore, using the Xenon mass (2.175×10
-25

 kg), 

a value of 20eV is found for the Te using results from                                                             

part II. Unfortunately, the electron density cannot be estimated with the model from part III 

because no curvature is visible. However, recent measurements which are not yet fully 

understood have shown a saturation of the frequency and would allow measuring ne. 

V. Conclusion 

The 3D dispersion relation has been solved numerically and its initial slope is shown to be 

equal to 0.9×cs.  A model was developed to fit equation (3) in order to find Te and ne. 

Collective scattering measurements allow measuring group velocity and Te is estimated to be 

equal to 20eV neglecting Ti. Unfortunately, ne cannot be found because no curvature is visible. 
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Fig. 3. The fitted value Vd,model is plotted versus the input value 

Vd,num for different ωce. Vd,model is similar than Vd,num for most of ωce. 

Fig. 4. Dispersion relation obtained by collective 

scattering for the azimuthal mode and its fit. 
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