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The GAMMA10 tandem mirror is planning to install an axisymmetric divertor cell in it.

Fig.1(a) is the GAMMA10, and Fig.1(b) is the present design of the GAMMA10 A-divertor,

where the divertor/dipole region of GAMMA10 A-divertor is plotted in Fig.1(c).
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Figure 1: (a) GAMMA10, (b) GAMMA10 A-divertor
and (c) divertor/dipole region with divertor plate

There is a divertor plate, the shape of

which is tentative, in the dipole region in

Fig.1(c). All ions diffused radially in the

central cell move along the separatrix (a

magnetic flux tube, the field lines on which

pass through the magnetic null [x-point]);

those ions escape into a dipole region and

then hit the divertor plate. The divertor

simulation experiments of a large tokamak

or a large helical device are expected to be

realized in the GAMMA10 A-divertor.

By the way, the most dangerous insta-

bility in the open magnetic system such as GAMMA10 is a flute instability. The GAMMA10

A-divertor is planning to stabilize the flute modes in the core region by a remaining anchor

mirror cell and in the peripheral region by means of plasma compressibility[1], The divertor

mirror cell, however, contains x-point, so a large plasma diffusion around the x-point breaks the

stability condition [δ(pUγ)δU ≥ 0], which can make flute modes unstable, where p the plasma

pressure, U the specific volume of a magnetic field line, δ means the variation in the outward

direction.

The short circuit effects due to electrons on the separatrix is expected to stabilize the charge

separation resulting from the centrifugal drifts there. Thus we have calculated the flute insta-

bilities and its associated radial transport inside the separatrix with the boundary condition that

the perturbed electrostatic potential φ̃ = 0 on the separatrix[2,3]. The electric resistivity gener-

ated by the electron chaotic motion around x-point, however, may disturb the short circuit of

electrons[4]. We, therefore, calculate the flute instability in the region including divertor and

dipole regions of GAMMA10 A-divertor. Here, we do not assume the electron short circuit
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around x-point.

We perform the computer simulation on the flute instabilities in the GAMMA10 A-divertor.

The basic equations used here are the reduced MHD equations, which are described in Ref.[5].

In order to apply the equations, which were obtained in the assumption of the axisymmetric

magnetic system, we revised the magnetic specific volume U as

U =
∫

p̂‖(χ)+ p̂⊥(χ)
B2 dχ (1)

Here pressures p‖,⊥ are represented by a separation of variables p‖,⊥(ψ,χ) = p̂‖,⊥(χ)ν(ψ). The

coordinates (ψ,θ,χ), where the magnetic field B is described as B = ∇ψ×∇θ = ∇χ, are adopted.

The flute stability condition [δ(pUγ)δU ≥ 0] is written in terms of U in Eq.(1)[2,3],

∂U/∂ψ ≤ 0 (2)

in the case that the compressional term pUγ−1(δU)2 is neglected compared to UγδpδU, which

is used to flute mode stability analysis in a long thin magnetic field, because the relation δp ≤ 0

is satisfied in the experimental devices. Equation (2) means that the flute modes are stabilized

by the good magnetic field line curvature.
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Figure 2: Axial pressure profiles p̂ = p̂‖(χ) + p̂⊥(χ) in
GAMMA10 A-divertor.

Fig.2 illustrates the axial pres-

sure profiles in the GAMMA10 A-

divertor, where the pressure in the

anchor mirror cell (z � −520cm) is

taken to be higher than that in other cells in order to stabilize the flute modes in the core region.
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Figure 3: Specific volume of magnetic field
line.

The specific volume is plotted in Fig.3 for vari-

ous pA, where pA is the ratio of anchor pressure to

the central cell pressure. Here x ≡ √ψ/ψb, where

ψb is the coordinate of the boundary in the dipole

region. The separatrix is located at x = xnull � 0.63.

The case pA = 1 shows that ∂U/∂x > 0 inside xnull,

which is unstable to the flute modes, while the case

pA = 14 shows that ∂U/∂x < 0 inside x � 0.26 and

∂U/∂x > 0 in 0.26 < x < xnull.

At the separatrix U →∞ due to B→ 0. But ions

feel the average magnetic field during gyroperiod,

so U is expected to have a finite value averaged over

the ion gyromotion. The derivative ∂U/∂x < 0 inside the dipole region means that the flute

modes are stabile there.
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At first the simulation results in case pA = 1 are shown. Initial conditions are that DE(x, θ) =

1.0, TE(x, θ) = 1.0, w0(x, θ) = 1.0 in x < xnull and DE(x, θ) = 0.1, TE(x, θ) = 0.1, w0(x, θ) = 0.1

in xnull < x < 1. Here TE(x, θ) = T (x, θ)U(x)2/3, DE(x, θ) = ρ(x, θ)U(x), where T (x, θ), ρ(x, θ) are

plasma temperature and mass density, w0(x, θ)
[
�
∫

(dχ/B2)B · ∇× (ρv)
]

is the vorticity, details

of which are described in Ref.[2,3].
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Figure 4: Time evolution of electrostatic potential
φ̃ observed at x = 1/2 in case of pA = 1. Here m is
the azimuthal mode number.

Fig.4 plots the time evolution of electro-

static potential observed at x = 1/2, where

m is the azimuthal mode number of Fourier

components. The dashed line is the growth

rate calculated by the non-local linear anal-

ysis, where the radial profiles of DE , TE and

w0 at τ = 75 were used in the analysis which is shown in Fig.5. Here τ is the normalized time.

The flute instability grows through the linear phase and enters the nonlinear saturation phase,

the phase of which continues with high amplitude in time.

real part

imaginary part
eigen function determined
by non-local linear theory

0.0

1.0

0.0
0.2 0.4 0.6 0.8 1.0x

0.0

1.0

0.5

0.5

0.0
0.2 0.4 0.6 0.8 1.0x

DE

TE

τ = 75

τ = 75

(a)

(b)
Φ∼

Φ∼
pΑ = 1

pΑ = 1

0.0 0.2 0.4 0.6 0.8 1.0x

(a.u.) (d)

xnull xnull

xnull

0.0

1.0

0.5

-0.5

-1.0

real part

imaginary part

eigen function observed
in the simulation at τ = 75

0.0

0.0

1.0

0.5

0.2 0.4 0.6 0.8 1.0x

(a.u.) (c)

xnull

Figure 5: Radial profiles of (a) DE, (b) TE averaged over
θ at τ = 75, and (c) m = 1 electrostatic potential φ̃ in case
of pA = 1. (d) is the radial profile of φ̃ calculated by the
nonlocal linear analysis.

Fig.5 plots the radial profiles aver-

aged over θ at τ= 75. The radial profiles

of DE and TE around x = xnull show the

large radial transport around the separa-

trix (note that DE ∝ U and TE ∝ U2/3).

Fig.5(c) is the radial profile of m = 1

Fourier amplitude of φ̃ observed in the

simulation. The flute mode is found to

be localized inside xnull and there is no

flute instability outside xnull in Fig.5(c).

The nonlocal linear analysis was carried out by using the radial profiles just mentioned above.

The resultant eigen-function is plotted in Fig.5(d). The eigen-function were calculated from

x = 0 with the boundary conditions but the solution was not determined beyond xnull, thus the

eigen-function is not drawn beyond xnull in Fig.5(d).

Dfφ Tf
high

low low

high

low

high

τ = 80

Figure 6: Contour plots of D f (x, θ) and T f (x, θ). Here D f and T f are
the variables in which m = 0 component is eliminated from DE and TE .

The contours of D f and

T f plotted in Fig.6 at τ =

80 indicates that the flute

mode perturbations are lo-

calized inside xnull. The

flute fluctuations are quite
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small in the dipole region

(outside xnull), which is consistent with the results in Fig.5.
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Figure 7: Time evolution of electrostatic potential
φ̃ observed at x = 1/2 in case of pA = 14. Here m is
the azimuthal mode number.

The case of pA = 14 is plotted in Figs.7 and

8. Even that ∂U/∂ψ < 0 near axis (where is

stable to the flute modes), the flute is unstable

as a whole and after the linear growing phase

the flute instabilities enter the nonlinear satu-

ration phase. The linear growth rate observed

in the simulation agrees with that calculated by the nonlocal linear analysis by using the radial

profiles of w0, DE and TE observed in the simulation at τ = 90. The flute mode fluctuations are

kept high level in the nonlinear saturation state as in the case of pA = 1.
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Figure 8: Radial profiles of (a) DE, (b) TE averaged over
θ at τ = 75, and (c) m = 1 electrostatic potential φ̃ in case
of pA = 14. (d) is the radial profile of φ̃ calculated by the
linear analysis.

The radial profiles of DE and TE av-

eraged over θ in Figs.8(a) and 8(b) show

the large diffusion around xnull. The

flute instability has enhanced the radial

transport of TE in 0.2 <∼ x ≤ xnull. The

eigen-function of φ̃ is localized inside

xnull in Fig.8(c). The eigen-function cal-

culated by the nonlocal linear analysis

Fig.8(d) agrees with that observed one

in Fig.8(c).

In summary we performed the simulations on the flute mode instabilities in the divertor/dipole

region of the GAMMA10 A-divertor. We have calculated only in the divertor region with

the boundary condition that the perturbation of φ is zero along the boundary (magnetic null)

before[2,3]. So this paper is the first calculation including the dipole region as well as the di-

vertor. The results of the simulation indicate that the magnetic null can suppress the flute mode

fluctuations there even if the effects of electron short circuit is removed in the simulation.
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