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Mode coupling processes and nonlinear energy transfers play an important role in the orga-

nization of plasma turbulence. To detect mode combinations that can couple nonlinearly, the

matching conditions for the different fluctuating components must be tested. This can be done

by computing higher order spectra, like the bispectrum and its normalized form, the bicoher-

ence. Those quantities are primarily computed in the frequency domain but methods of com-

putation in the wave number domain have been developed. One of those methods uses wavelet

analysis on a single set of spatial data to obtain a bicoherence related quantity with a high tem-

poral resolution[1]. Another method computes the bicoherence for combinations of mode and

frequency by applying Fourier analysis to spatio-temporal data[2].

In experimental devices, spatio-temporal data of fluctuations are usually provided by multiple

probe arrays and especially azimuthal probe arrays. Recently, fast camera imaging emerged

as an alternative diagnostic to obtain two-dimensional time-resolved measurements of elec-

tron plasma density fluctuations without perturbing the plasma[3]. Alternatively, the fluctuating

quantities can be provided by numerical simulations. A comparative study of the bicoherence

for different data sets and different analysis methods is necessary to understand the restrictions

and possibilities of bicoherence analysis. The application to a plasma with a restricted number

of modes helps to gain a better insight into general properties of low frequency instability de-

velopment and its relation to third order spectra.

This contribution presents bicoherence computations on data provided by the numerical simula-

tion code CYTO [4]. Spectra and bispectra are computed using Fourier-based methods as well

as wavelet based methods.
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Figure 1: a) 2D spectrum of mode number and frequency combinations computed for the radius of r = 8. b)
Frequency bicoherence for the same radial position.

Description of fluctuation data

Simulation data were obtained using the 2D version of the CYTO fluid code, developed

by Volker Naulin [4]. The simulations reproduce well the unstable regimes with nonlinearly

interacting global modes in cylindrical geometry. The code provides data of plasma potential

and density on a grid of 32 radial and 64 poloidal positions.

Analysis using Fourier decomposition methods

First, to gain an insight in the different modes and frequencies that compose the fluctua-

tions, the two-dimensional power spectrum in mode number and frequency is computed for the

complete time series of spatio-temporal data. The definition of the two-dimensional Fourier de-

composition is:Zmk = 1
MN ∑M−1

i=0 ∑N−1
j=0 zi j exp

[
2πI

(
im
M − jk

N

)]
, where I is the imaginary unit, m

is the poloidal mode number and k is the index for the frequency [5]. The frequency is calculated

as f = k∆ f where ∆ f is the frequency resolution determined by the inverse of the time window

length. In the actual computation procedure, the data is first decomposed in the time direction to

obtain M sets of complex Fourier components. Then the complex Fourier components are de-

composed in the space direction to extract the complex phase distribution in the poloidal space.

Finally, the two-dimensional power spectrum is computed from the two-dimensional Fourier

decomposed signal as Smk = |Zmk|2/∆ f .

The resulting spectrum is shown in figure 1a) for a radius where the mode m = 4 is visible

in the spatio-temporal plot of the raw data. The m = 4 mode is indeed visible at a frequency

of 0.8 · 10−5, along with the mode m = 2 at almost the same frequency and a broad band of
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Figure 2: Normalized B⋆ (a) and power spectrum (b) at the moment t = 405 and bicoherence (c) and mode
spectrum (d) at the moment t = 452.

negative mode numbers, propagating in the inverse direction, at low frequencies.

Using Fourier decomposition, the frequency bicoherence can be computed for components a,b

and b satisfying the matching condition of fa + fb = fc as b2 = |⟨ZaZbZc⟩|2
⟨|ZaZb|2⟩⟨|Zc|2⟩ . The result of

this computation is shown in figure 1b). Combinations with a strong bicoherence involve the

frequencies 0.8 ·10−5 and 1.6 ·10−5 that correspond to the mode m = 4 and its first harmonic. It

also reveals a pattern of lines showing the possible coupling with a broad frequency range, as it

could appear in case of a change of the modes frequencies with time or in case of an additional

coupling with low frequency components.

Analysis using wavelet mode number bicoherence

When wavelet coefficients X(m,θ) calculated from 2D data are used instead of Fourier coef-

ficients the quantity B⋆(m1,m2) =
∫

X(m1,θ)X(m2,θ)X∗(m1 +m2,θ)dθ can be calculated [6]

for each time and normalized by the power spectra of the mode triplet. this normalized B⋆ com-

bines information about the spatial phase matching of the modes and the modes power. The

definition of this quantity is very similar to a wave number bicoherence, but its interpretation is

not straightforward, as the prerequisite of averaging over independent ensembles is not fulfilled.

Figure 2 shows the wavelet computed normalized B⋆, denoted b⋆, and wavelet computed

mode power spectra for two successive moments in time. In figure a), the b⋆ is relatively high

for a large range of mode number values and radii and involving in particular mode numbers

m = 2 to m = 4. At the next moment, the power of the m = 3 mode is increased. (The position

of m = 3 is marked on each of the figures a) to d) by a red square to ease the reading of the

figures). In figure 3 a similar sequence can be observed for the mode m = 4. The value of b⋆

is high on m = 4 in a) and then decreases while the power of m = 4 increases in figure d). A

peak of B⋆ followed by an increase of the mode’s power had also been observed with camera
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Figure 3: Normalized B⋆ (a) and power spectrum (b) at the moment t = 1007 and bicoherence (c) and mode
spectrum (d) at the moment t = 1244.

data obtained on the linear device Mirabelle [6], although the limited temporal resolution of the

measurement did not allow a systematic observation of such sequences. It can also be noticed

that in many cases the simulation results indicate that the maxima of b⋆ travel in a preferred

direction, towards higher radii.

Conclusions

The dynamics of nonlinear couplings have been investigated by applying mode number bi-

coherence computation to two dimensional data of plasma density fluctuations. By applying

wavelet methods the temporal dynamics of power spectra and the bispectrum related quantity

B⋆ have been studied. This study revealed a typical spectrum sequence, that had already been

observed on the Vineta [1] and Mirabelle [6] devices. This third observation in numerical sim-

ulations of short-time three mode couplings preceding an energy increase is an important con-

firmation that calls for further studies aiming at understanding the causality between changes in

power spectrum and bispectra or B⋆.
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