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Introduction

The torque from resonant magnetic field perturbations (RMPs) acting on the plasma

tends to modify the plasma rotation such that the frequency of the perturbation in the

rest frame of the electron fluid is minimized. If the RMP amplitude is large enough, a

“locked mode” is formed – a stable state where this frequency is close to zero and shielding

of RMP by the plasma is reduced. In this case, even for relatively small RMP amplitudes,

large islands can be produced such that linear and quasilinear (QL) theories are not valid

any more. However, the violation of QL theory does not necessarily prohibit its use for

the description of the locked mode. Due to a mass difference, nonlinear effects become

significant for electron component at much smaller perturbation field amplitudes than for

ions. Therefore, it is possible that QL theory is still valid for ions while electrons are in the

nonlinear regime. However, the consequence of this regime is that electrons are excluded

from RMP shielding and are not important anymore - the same result as for QL theory

and this allows us to use QL theory for both components.

In the present report, the formation of a locked mode in the case of small RMP amplitudes

is considered assuming linear theory still to be valid. The effect of RMP on rotation

velocity, density and temperature profiles is described by a set of quasi-linear transport

equations. The kinetic approach [1,2] is used where Maxwell equations are solved for a

straight cylindrical tokamak model using the linear plasma response currents computed

in the kinetic approximation simplified by a specific finite Larmor radius expansion. Here,
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the collisionless case is considered for the plasma response to RMP which gives also a

reasonable estimate of the perturbation fields in presence of collisions [2].

Basic equations

The effect of the perturbation field on the background parameters in the absence of other

transport effects is described by the quasilinear kinetic equation. In canonical action-angle

variables θα and Jα this equation becomes
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Here J , Ω and m denote the whole set of canonical actions, canonical frequencies and

wavenumbers of Fourier expansion of the perturbed Hamiltonian over canonical angles,

Hm are the coefficients of this expansion and ω is the perturbation frequency. Taking

moments of this equation and adding the contributions of other transport effects, balance

equations are obtained which describe the temporal evolution of the plasma density ne,

the toroidal ion rotation velocity V ϕ
i , and the electron and ion temperatures Te,i,
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Here, r is the effective radius, S is the flux surface area, 〈. . . 〉 denotes neoclassical flux

surface average, gϕϕ and g are the covariant toroidal component of the metric tensor

and its determinant respectively, and Bϑ
0 , Φ, mi, µ

(A)
ϕ , Γ (A)

e,i and Q
(A)
e,i and S

(a)
b are the

contra-variant poloidal component of the main magnetic field, equilibrium electrostatic

potential, ion mass, anomalous toroidal viscosity coefficient, anomalous particle and heat

flux densities and various sources, respectively. The neoclassical heat flux density Q(NEO)
i

is considered for ions only. The quasilinear particle and heat flux densities are composed

of thermodynamic forces Ai and diffusion coefficients Dij in the following way,

ΓEM
e,i =− ne,i(D11A1 +D12A2) (5)

QEM
e,i =− ne,iTe,i(D21A1 +D22A2), (6)
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and the diffusion coefficients for a single perturbation mode Dij are given in the lowest

Larmor radius expansion order by
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Here Z = ωE(
√

2k‖vT )−1, ωE is the single RMPmode frequency in the moving frame where

the radial electric field vanishes, B̃r and Ẽ‖ are radial component of the perturbation

magnetic field and parallel component of the perturbation electric field, respectively (see

also [3]). Coefficients (8) should be summed up over the modes of the perturbation.

Quasilinear modelling

For the numerical solution, the balance equations are discretized in space on the radial

grid and solved following the time evolution with an implicit time stepping method. Each

time step, the perturbation electromagnetic field is updated by the kinetic wave code

KILCA [2]. For the present modelling, tokamak parameters are taken for a JET-scale

device with the RMP spectrum typical for experiments on ELM mitigation using the C-

coil. The amplitudes of this field are taken corresponding to 20 kA and 5 kA coil current

mentioned below as “high” and “medium”, respectively. Results are obtained for the whole

spectrum as well as for a single perturbation mode n = 1, m = −3. This mode together

with the n = 1, m = −2 mode are the main contributions to the spectrum. For both, the

“high” and the “medium” amplitude model, locking is obtained, i.e. radial electric field

is altered in such a way that the perpendicular electron fluid velocity becomes zero at

the resonant surface. In addition, in both cases a quasilinear plateau in the temperature

profile is formed in the resonant layer for the electrons and partly for the ions. However, the

toroidal rotation velocity remains finite for the medium amplitude in contrast to the high

amplitude case where a quasilinear plateau is formed also on the density. This completely

stops the rotation at the resonant surface. Only in this case the perturbation field changes

significantly in the whole volume tending to recover the vacuum value while in the medium

amplitude case this change is localized to the resonant layer. This difference is related to

the ion contribution of RMP shielding. The electron component which provides the main

shielding effect is more sensitive to quasilinear plateau formation because its parallel

current is highly localized at the resonant surface where the quasilinear effect is strongest.
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Thus, the parallel electron response current is almost completely eliminated by this effect.

However, shielding by the ions still remains efficient for the medium amplitude case and

is reduced strongly only in the high amplitude case. Note that for a proper description

of the ion component contribution to RMP shielding the kinetic approach is important

because the width of the resonant layer is usually comparable with the ion Larmor radius.

Fig. 1. Radial profiles of the Fourier amplitude of the radial magnetic field for high (left)

and medium (right) amplitude perturbations without plasma response (green) and with

plasma response for the unperturbed (blue) and the perturbed (red) equilibrium plasma.

Fig. 2. Profiles of the toroidal rotation velocity for high (left) and medium (right) pertur-

bation amplitudes for the unperturbed (blue) and the perturbed (red) equilibrium plasma.

Solid and dashed lines correspond to a single mode and a full coil spectrum respectively.
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