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Introduction

In recent studies of the interaction of low frequency resonant magnetic field perturbations

it has been demonstrated that MHD theory has strong limitations in its applicability

for modern Tokamak parameter range [1]. Namely, the radial scale of resonant layers in

plasma is comparable to the ion Larmor radius. Therefore, it is interesting to compare

MHD results for various instabilities connected with resonant magnetic flux surfaces (kink

modes, resistive wall modes) with results using the kinetic approach.

Code KiLCA (Kinetic Linear Cylindrical Approximation) is a wave code based on the

kinetic description of the tokamak plasma in a periodic cylinder geometry [2,3]. The code

has been successfully used to study kinetic effects of the interaction of resonant magnetic

perturbations and the plasma in particular near resonant magnetic surfaces. The present

report describes the modification of this code in such a way that also global modes and

wave instabilities can be studied. The code is used to study kinetic effects including

Landau damping and a proper account of particle collisions on the resistive wall mode.

This is of particular interest if resonant magnetic surfaces are present in the plasma.

MHD modelling

In the present studies, results from ideal MHD modelling are compared to results from

kinetic modelling. An ideal MHD equilibrium

∇p =
1

c
j0 ×B0, ∇×B0 =

4π

c
j0,

is taken in one dimensional screw pinch symmetry. The ideal MHD equation are linearized

and written in the form of an eigenvalue problem [4,5] for the displacemntvector ξ,

−ω2ρ0 ξ = F (ξ)
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where

F (ξ) = ∇ (ξ · ∇p0 + γp0 (∇ · ξ)) +
1

4π
[(∇×B0)×B1 + (∇×B1)×B0] .

+ ∇ · [ρ0ξ (v0 · ∇)v0 − ρ0v0 (v0 · ∇) ξ] + 2iωρ0 (v0 · ∇) ξ.

In screw pinch symmetry, a system of ordinary differential equations for ξr and p∗ is

obtained

AS

r

d

dr
(rξr) = C11 (rξr)− C12p

∗, AS
d

dr
p∗ = C21 (rξr)− C22p

∗,

p∗ = −γp0∇ · ξ − ξ · p0 +
B ·B1

4π
, ω̃ = ω − mvθ

r
− kvz,

A = ρ0ω̃
2 − F 2

4π
, S =

(
B2
θ

4π
+ γp0

)
ρ0ω̃

2 − γp0
F 2

4π
,

C11 = ρ0ω̃
2Q

r
− 2m

ST

r3
, C12 = ρ2

0ω̃
4 −

(
k2 +

m2

r2

)
S,

C21 =
AS

r
C4 − 4

ST 2

r3
+
Q2

r3
, C22 = rC11,

T =
FBθ

4π
+ ρ0ω̃vθ, C4 = A+ r

d

dr

(
B2
θ − 4πρ0v

2
θ

4πr2

)
,

Q = ρ0ω̃
2

(
B2
θ

4π
− ρ0v

2
θ

)
+
ρ0

4π
(Bθω̃ + Fvθ)

2 .

Kinetic modelling

In the kinetic modelling we solve Vlasov equation

∂f

∂t
+∇ · (fv) +

F

m

∂f

∂v
=

∂

∂v
Dαβ

∂f

∂v
, (1)

in cylindrical geometry [2,3]. The Coulomb collision operator is modelled by a charge

conserving Fokker-Planck operator [3]. The perturbation field is determined by Maxwell

equations

∇× E =
iω

c
B , ∇×B = −iω

c
E +

4π

c
j. (2)

From the kinetic model we obtain the current density

j = e

∫
d3p v f , (3)

which is used in Maxwell equations.

Numerical realization

Maxwell equations with electrical charge and current density obtained from either the

fluid model or the kinetic model are solved for a straight periodic cylinder. Fourier trans-

forming with respect to time as well as poloidal and toroidal angles yields a set of ordinary
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differential equations for the different eigenmodes. The various modes have very different

scales and an appropriate solver for the boundary value problem has to be used. Basic

solutions in 5 different regions, namely two plasma regions, a vacuum region, a resistive

wall region of finite size, and an outside vacuum region for arbitrary frequency ω are

constructed. The vacuum as well as the resistive wall region solutions are obtained ana-

lytically. Finally ω is obtained such that the solutions can be matched appropriately at

the freely chosen radius within the plasma region. From this the dispersion relation for

the eigenfrequency ω of the modes follows.

Numerical profiles for the chosen equilibrium are shown in Fig. 1. This gives a character-

istic time τA = R/VA with big radius R and the Alfvén speed VA for magnetic axis values

of field and density. The chosen profile of the toroidal frequency in units of the Alfvén

frequency is also shown in Fig. 1. The different regions and a sketch of the matching

procedure is sketched in Fig. 2.

Results

For poloidal mode number m = −1 and toroidal mode number n = 1, the resonant

surface is at r/rp ≈ 0.8. For this mode numbers, an unstable global mode has been

found for the MHD model as well as for the kinetic model of the current density. The

corresponding results for the Fourier components of the radial magnetic field perturbation

(eigenfunctions) are shown in the left of Fig. 3 for zero toroidal plasma velocity. In ideal

MHD, the Fourier component is purely real whereas in the kinetic model it is complex

due to Landau damping and the account of collisions. The solutions are seen to be in

qualitative agreement. The corresponding growth rates are shown on the right of Fig. 3 as a

function of the toroidal rotation frequency and are about 10% of the Alfvén frequency. The

modes are stabilized for a certain value of the toroidal rotation frequency. The threshold

value for the kinetic model is observed to be visibly smaller than the corresponding value

for the MHD model. Such a behavior has also been observed in a previous study where

some kinetic effects on the growths rates of resistive wall modes have been considered [6].
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Fig. 1. Left: Profiles for density n, temperatures Ti, Te, and safety factor q over normalized

plasma radius rp. Right: Profile for the toroidal rotation frequency.

Fig. 2. Left: Different regions: plasma region, vacuum region, resistive wall region, and

outside vacuum region. Right: Eigenfunctions are computed and the dispersion follows

from the continuity conditions at some arbitrary radius.
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Fig. 3. Left: Comparison of the Fourier components of the radial magnetic field pertur-

bation for the ideal MHD modelling and the kinetic modelling. Right: Growth rate γ

normalized to the Alfén time τA as a function of the normalized toroidal rotation fre-

quency (ω0 is the rotation frequency at r = 0). Solid line is the ideal MHD result and

dashed line is the kinetic modelling result.
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