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Locking of Small Magnetic Islands by Error Field in T-10 Tokamak

N.V. Ivanov, A.M. Kakurin
National Research Centre «Kurchatov Institutey, Moscow, Russia

1. Introduction

The T-10 tokamak experimental data on the dynamics of m = 2 mode in the presence of the
intrinsic Error Field are presented. In addition to the well-known effect of the large
magnetic island locking which takes place at mode amplitude higher than 10 T in the
regime in question, a locking of sufficiently small magnetic islands is observed. If the
amplitude exceeds a certain threshold level, the mode is in the state of an irregular rotation.
If the amplitude is lower than the threshold level, the mode rotation stops. The experimental
data are simulated with the TEAR code [1, 2] utilizing the model for the non-linear
Rutherford tearing mode in rotating plasma in

the presence of the Error Field. Unlike [3],
deviations of magnetic island rotation velocity
from the velocity of the resonant plasma layer
are not neglected in this model.

[107T]

o

6C

M NCA AMM
F NN

B
a b

2. Experimental Result

The experiments were carried out in the
Ohmic regime with the following discharge
parameters: the toroidal magnetic field
Bt =2.4T, the discharge current Ip =240 KA
and the line-average plasma density
ne~1x10®m3 The minor radius of the
plasma was a=0.27 m. A tokamak regime
which was characterized by the m =2 mode
with non-monotonically varying amplitude
was chosen for this experiment. The m =2,
n=1 harmonic of the Error Field can be
estimated as Bgr=1.5-10"T at the plasma
boundary.
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The space structure of the MHD mode was
measured with a set of poloidal magnetic field Fig. 1. Experimental waveforms of m = 2

sensors located at the inner side of the vacuum mode cosine, Byc, and sine, By,
vessel wall. For each spatial Fourier harmonic components; mode amplitude, Ampl By;
with certain m and n numbers, the poloidal instantaneous frequency of the mode, Q/2n

magnetic field perturbation at the radial

position of the magnetic sensors is

Bo(6, ¢, 1) = Boc ()cos(mb - ng) +Bys (t)sin(mé - ny),

where ¢ and @ are the toroidal and poloidal angles, Byc (t) and Bys (t) are the cosine and
sine components of the measured harmonic of the magnetic perturbation. The amplitude of

the harmonic is AmplB, (t)= . /BZ.(t)+Bj(t) . The space phase of this harmonic is defined

as @(t)=arctan [Bgs(t)/Bgc(t)] and the instantaneous value of the mode frequency is
Q(t) = db .
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The experimental waveforms of the m =2 mode signals in a case of the mode amplitude
non-monotonic variation in time are shown in Fig. 1. If the mode amplitude exceeds the
level of about Ampl By=1.5-10" T, the mode is in a state of the irregular rotation. With a
decrease of the amplitude lower than this threshold value the mode rotation pauses and
recovers when the amplitude surpasses this level again. In the conditions of our experiment
the observed threshold value of the amplitude corresponds to the calculated magnetic island
width W = 0.03 m. Though in this paper we deal with relatively small magnetic islands, this
width exceeds by an order of magnitude the level of transition to the Rutherford non-linear
regime of the tearing mode [4].

3. Numerical modelling

The TEAR code is based on the non-linear Rutherford model [4 - 7] of the tearing mode.
The effects of the plasma rotation and Resonant Magnetic Perturbation (RMP) are taken
into account. As in [8, 9], in cylindrical approximation the equations
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are used for the calculation of the radial distribution of the cosine, W¢ , and sine, ¥s,
components of the helical magnetic flux perturbation:

Y =Y. (r,t) cos (M8 —ng)+Y(r,t)sin(mé—ng). 3)
The poloidal and radial components of the magnetic field perturbation are B, =—0¥/or
and B, :( r)a\P/ae. We assume that R >>a, m>n. The solution of (1), (2) satisfies the

boundary conditions W¢ s (0) = Wc s (b) =0, where b =0.5 m is the effective radius of the
perfectly conducting outer wall. In (1) and (2), ikc and ixs are the cosine and sine
components of the external helical current surface densities at radii r = r,> a:

I, =l c(t) cos(m@—ng)+i,(t)sin(mé—ng). 4
In this paper we assume that the RMP is produced by two surface currents outside the
plasma, including the current, i; cs , which makes the permanent Error Field and the current

d\PC,S(rW)
dt
wall at r = ryy due to the magnetic flux variations in time. In this formula, h = 0.3x10°m is

the effective thickness of the vacuum vessel wall and o is the stainless-steel wall
conductivity.

with the surface density i,  =—ch , generated in the resistive vacuum vessel

The solution of the equations (1), (2) represent the superposition

Wes (r) =Yocs (r) + Wics (1) )
of the solution Wycs (r) of homogeneous equations with ixcs=0 and partial solutions
Yics (r) of the non-homogeneous equations with ixcs#0 satisfying the boundary

i RPZ+Y: | . :
conditions ¥ ¢ s (rs + W/2) = ¥ics (b) =0, where W =4 "Fe T Es | s the width of the
|/ 1By [du/dr|
magnetic island, rs is the radius of the magnetic surface on which u(rs) = n/m. The stability
index of the tearing mode consists of the axisymmetric part A’,(W) independent on the
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external helical current and the part A’iC,S(W) proportional t o the components of the

external helical current:
lPé,s(rs +W/2)_ lPé,s(rs _W/Z)

Alc,s(W) = ¥ (1) = A'o (W )+ A'i c,s(W) | (6)
where |
A (W) _ \P(;c(rs +W/2)_T(;c(rs _W/Z) _ \P(;s(rs +W/2)_‘P(;s(rs _W/Z) (7)
’ - Woc(rs) - Wos(r5) ’
' _ \Pi'C,S(rS +W/2)
Aic:,s(W)— W (8)

In (6) — (8), ¥’ denotes d\W/dr.

The time evolution of the cosine and sine components of the magnetic flux perturbation
Y s at the radius r = rs is described by the modified Rutherford equations:

AL+ B AL — Al — AL A’
d\¥, _ aza)R 0 ﬂp( Bs ~ e pol)+ ic Y. -Q ¥, )
dt w w
Ay + B \AGs — A, — AL A’
dd\{tls :nazw{ 0 'Bp( BSW &) p0')+ V\I/S }‘I’S +Q Y., (10)
where @, =1/r5 is the inverse resistive time,
_ 2 ' ' — 1
g =, @% /1. In (9), (10), the terms Aj;, AG:GJ z.ind £ iian LA
Ar,, are the bootstrap, curvature and polarization = “{/VVV VYV
neoclassical terms respectively (see [10 - 12]). The o '55‘
saturation level of the magnetic island width Wgy is = 51
determined by the condition = 1n DA i
A:) +ﬂp(A;38_A!GGJ _A:Jol)zo' Qf V VU V U
In the equations (9), (10), '5}

Q. =mV,/r,—nV, /R-Q. is the natural

frequency depending on the poloidal, Vy, and the
toroidal, V,, rotation velocities of the resonant
plasma layer ry,—W/2<r <r;+W /2, as well as on

the frequency of the electron diamagnetic drift, Qg ,
[3, 7, 13 - 16]. In the TEAR code the equations of
the resonant layer angular motion in the toroidal and
poloidal directions are used to calculate the V, and
V, time variations due to the interaction between
the RMP and magnetic island structure (see [2]).
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The result of the simulation for the conditions of
our experiment is shown in Fig. 2. One can see, that
the used numerical model in general features
correctly describes the experimental data. The mode

t [ms/division]

Fig. 2. Calculated waveforms of m =2

rotation stops after the decrease of the amplitude mode cosine, B,c, and sine, Bys,
lower than a certain threshold value. The rotation  components; mode amplitude, Ampl By:
recovers when the growing amplitude exceeds this instantaneous frequency, Q/2x and

level again. In the conditions under consideration, natural frequency, Qn./2n
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the variations of the calculated natural frequency Qn: are small and do not explain the
pause of mode rotation.

The explanation follows from the consideration of the equations (9), (10). Multiplying the
equation (9) by Ws, the equation (10) by W and calculating the difference between these
equations, one can obtain the instantaneous frequency of the mode:

167 ,,a"R (W + (¥ )
rsBy |du/dr] w?
where @&, —®, is the difference between the spatial phases of the tearing mode,

sin(®,, —@,) (11)

Q= d(arctan \st =Q .
dt

C

b Y b . .
®,, =arctan T—S and the RMP, ®, =arctan lP—S The variations of Q with respect to the
C iC

natural frequency Qny are described by the second term in the right-hand-side of (11).
These variations take place periodically along with the rotation of the mode relating to the
RMP. The range of the second term variations is proportional to the RMP value and
inversely proportional to W3, It increases with the reduction of the magnetic island width.
In the case of sufficiently small island width and appropriate phase difference, ®, —®,,
the condition of the mode locking Q2 = 0 takes place. It should be noted that this condition
does not directly depend on A; and on the neoclassical terms in the modified Rutherford
equations. As it can be estimated from (11), the mode locking occurs when the magnetic
: o wg B |? :

island width is less than the threshold value: Vle R @ Be . For our experimental

a a Qnat BT

conditions, this formula gives the estimation of the magnetic island width W = 0.05 m that
roughly agree with the value obtained from the experiment. Even in the case of arbitrary
small Error Field, the mode locking takes place for sufficiently small magnetic islands.

4. Summary

The experimental observation of the mode locking in the case of sufficiently small mode
amplitude is observed. The explanation is attributed to the asymmetric effect of the Error
Field on the tearing mode stability index.
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