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1. Introduction

MHD instabilities like the Neoclassical Tearing Modes (NTM) constitute an important is-

sue for ITER. In this device, NTMs are predicted to limit drastically the operational βN =

β%aB/IMA
p . Thus it is essential to understand better the physics of those modes. Simulations

have been already carried out with the XTOR code [1] with a simplified model. We present here

the implementation of a more complete formulation based on the viscous stress tensor that is

directly linked to the pressure anisotropy. It allows one to recover the neoclassical equilibrium

[2] and thus to treat the evolution of NTMs in a consistent manner.

2. Physical model

In general, the velocity distribution function is not isotropic. The pressure anisotropy con-

tribution is modelled in the MHD set of equations by the stress tensor. The latter is composed

of three components: parallel, gyroviscous and perpendicular. Considering an ordering where

the Larmor Radius is small compared to the plasma size enables to neglect the third compo-

nent with respect to the parallel term. The gyroviscous cancellation, already implemented in

the code, provides the second contribution. Finally, the parallel component that will retain our

attention is calculated following [3]. It is written in a Chew-Goldberger-Low (CGL) form:

Π‖ =
3
2

π‖
[

bb− 1
3

I
]
, π‖ =

2
3
(p‖− p⊥) (1)

where b is the unit vector parallel to the magnetic field. The pressure anisotropy π‖ is given by:

3
2

π‖ =−nsmsµs
B2
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∇ ·Vs

]
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where s = i,e corresponds to the ions and electrons, respectively. The first element is the forcing

term to the equilibrium flows. The second and third terms have a key role for the damping of fast

growing instabilities. The neoclassical coefficients µs and ks = µs,2/µs,1 are calculated accord-

ing to [4]. The heat flow can be separated in a perpendicular and a parallel component. The first
∗See the Appendix of F. Romanelli et al., Proceedings of the 23rd IAEA FEC 2010, Daejeon, Korea
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one is directly computed from the temperature diamagnetic velocity. The parallel component is

determined by using the neoclassical equilibrium heat equation. It has not been retained for the

results presented in this paper.

The viscous stress tensor is implemented in the normalized set of MHD equations in XTOR.

The momentum equation reads as follows:

ρ∂tV =−ρ (V ·∇V+V∗i ·∇V⊥)+J×B−∇p−∇ ·Π‖i +ν∇2 (V+V∗i ) (3)

In this relation, the ion neoclassical tensor governs the generation of the poloidal ion equilibrium

flow. When the electron contribution is plugged into the Ohm’s law, the latter can be written such

that the tensor is part of the bootstrap current:

E+V×B = η
(
J‖−Jbs−JCD

)
−α

∇‖pe

ρ
(4)

with Jbs =
µe

µe +νei

[
J‖+

mi

me

1
α

(
∇ ·Π‖e

)
‖

µe

]
(5)

where α = 1/(ωciτA) is a measure of the diamagnetic contribution, τA the Alfvén time and ωci

the ion cyclotron frequency. We have assumed that the resistivity with neoclassical effects is

η ≈ ηSP (νei + µe)/νei with ηSP the Spitzer resistivity.

This model allows one to capture in a consistent way diamagnetic and neoclassical physics.

3. Neoclassical equilibrium

The first simulations including the viscous stress tensor have been undertaken to verify that it

satisfies the neoclassical equilibrium. The flux averaged divergence of the viscous stress tensor

[2] can be recovered from Eq. 1 and 2:

〈B ·∇ ·Πs〉= nsmsµs
〈
B2〉

(〈Vs ·∇θ〉
〈B ·∇θ〉 + ks

2
5ps

〈qs ·∇θ〉
〈B ·∇θ〉

)
(6)

Assuming that 〈B ·∇ ·Πi〉 ≈ 0, we obtain an expression for the ion poloidal velocity:

Viθ =−kiV ∗Tiθ − ki
2

5pi

〈
qi‖ ·∇θ

〉

〈B ·∇θ〉 (7)

The same recipe can be applied to calculate the bootstrap current:

〈B ·Jbs〉=
µe

µe +νei

ρ
α
〈
B2〉

(
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2
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〉
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(8)

Evaluations on non-inductive discharge from Tore Supra (#32299, βN = 0.11, βp = 0.66,

qmin = 1.34) and on a hybrid discharge form JET (#77922, βN = 2.35, qmin = 1.09) are shown
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in Figures 1 and 2, respectively. We have taken experimental values for α (α = 0.03 for Tore

Supra, α = 0.02 for JET). Good agreement is found between the analytical values and the

simulation performed with XTOR-2F. Close to the outer boundary, discrepancy is observed for

the averaged ion velocity. This is due to the curvature component in ∇ ·Πi that stands in the

perpendicular direction. Figure 1(right) shows how the flows evolves towards equilibrium after

∼ 104τA. In fact, balance is reached much faster in the region
√ψ < 0.8.

Figure 1: Left: Equilibrium ion poloidal flow. Center: bootstrap current. Right: evolution of the ion

poloidal flow until equilbrium for Tore Supra shot #32299 at t = 233.8s.

Figure 2: Left: Equilibrium ion poloidal flow. Center: bootstrap current. Right: evolution of the ion

poloidal flow until equilbrium for JET shot #77922 at t = 10s.

The JET equilibrium is characterized by a strong shaping of the equilibrium while the cross

section in Tore Supra is almost circular. The good match between analytical results and simula-

tion confirms that they are verified in a complex geometry. The poloidal ion flow and bootstrap

current are much larger and the evolution is much faster than in Tore Supra as the equilibrium

is reached after ∼ 103τA. The faster evolution is mainly due to higher values of the neoclassical

coefficients in JET.

4. Growth rate of the (2,1) tearing mode in Tore Supra

Ion flow damping by neoclassical friction is expected to mitigate the growth of tearing

modes. Simulations have been performed for situations with (α = 0.03) and without (α = 0)

diamagnetic effects. Figure 3 shows that the neoclassical tensor has a stabilizing effect in

both cases as expected from theory. Analytically we have the following relation for α = 0:(
λ
λ0

)4( λ
λ0

+ cn
λ0

)
= 1 where λ0 is the growth rate without neoclassical effects and cn = µiτA

q2

ε2x2 .

38th EPS Conference on Plasma Physics (2011) P2.094



Figure 3: Mitigation of (2,1) tearing growth by neo-

classical friction.

It is in general much smaller than expected

from the simple analytical model. We also no-

tice a discontinuity in the graph for the case

without neoclassical effects that could be ex-

plained by the quick change of the poloidal

velocity flow imposed by the new terms. For

µiτA > 10−5 , the effect of neoclassical terms

on the growth rate is larger for α = 0.

5. Conclusions

Figure 4: Perturbed part of the bootstrap current

after the injection of a magnetic seed in JET.

The viscous stress tensor has been imple-

mented in a CGL form in the non linear MHD

code XTOR-2F. It enables to recover the neo-

classical equilibrium. Simulations show that

the growth rate of the (2,1) tearing mode is

mitigated by the neoclassical terms as can

be expected by theory. When we add a (2,1)

magnetic seed in the stable JET equilibrium

presented above, the new model enables per-

turbation of the bootstrap current (Fig. 4).

Other modes are presents including the (1,1)

kink mode close to the magnetic axis. The

holes in the bootstrap current are driving terms for NTMs and provide the basis for a future

study with the XTOR-2F code.

Aknowledgements

This work was carried out within the framework of the European Fusion Development Agreement

(EFDA) and the French Research Federation for Fusion Studies (FR-FCM). This work, as part of ANR-

09-BLAN-0044-02, has benefited of financial support from Agence Nationale de la Recherche. The

views and opinions expressed herein do not necessarily reflect those of the European Commission.

References

[1] H. Lütjens and J.F. Luciani, J. Comp. Phys. 229, 8130 (2010).

[2] S. P. Hirshman and D. J. Sigmar, Nucl. Fusion 21, 1079 (1981).

[3] J. D. Callen, Physics of Plasmas 17, 056113 EPAPS supplemental file (2010).

[4] C. Kessel, Nucl. Fusion 34, 1221 (1994).

38th EPS Conference on Plasma Physics (2011) P2.094


