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1. Introduction

MHD instabilities like the Neoclassical Tearing Modes (NTM) constitute an important is-
sue for ITER. In this device, NTMs are predicted to limit drastically the operational By =
BoaB/IA. Thus it is essential to understand better the physics of those modes. Simulations
have been already carried out with the XTOR code [1] with a simplified model. We present here
the implementation of a more complete formulation based on the viscous stress tensor that is
directly linked to the pressure anisotropy. It allows one to recover the neoclassical equilibrium

[2] and thus to treat the evolution of NTMs in a consistent manner.

2. Physical model

In general, the velocity distribution function is not isotropic. The pressure anisotropy con-
tribution is modelled in the MHD set of equations by the stress tensor. The latter is composed
of three components: parallel, gyroviscous and perpendicular. Considering an ordering where
the Larmor Radius is small compared to the plasma size enables to neglect the third compo-
nent with respect to the parallel term. The gyroviscous cancellation, already implemented in
the code, provides the second contribution. Finally, the parallel component that will retain our
attention is calculated following [3]. It is written in a Chew-Goldberger-Low (CGL) form:
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where b is the unit vector parallel to the magnetic field. The pressure anisotropy 7| is given by:

%m = —nsmsusﬁ {(Vs +ks§_1(:j) -VInB+b-Vx (VgxB)/B+ %V-Vs 2)
where s =i, e corresponds to the ions and electrons, respectively. The first element is the forcing
term to the equilibrium flows. The second and third terms have a key role for the damping of fast
growing instabilities. The neoclassical coefficients pi; and ks = ;2 /14,1 are calculated accord-
ing to [4]. The heat flow can be separated in a perpendicular and a parallel component. The first

*See the Appendix of F. Romanelli et al., Proceedings of the 23rd IAEA FEC 2010, Daejeon, Korea
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one is directly computed from the temperature diamagnetic velocity. The parallel component is
determined by using the neoclassical equilibrium heat equation. It has not been retained for the
results presented in this paper.

The viscous stress tensor is implemented in the normalized set of MHD equations in XTOR.

The momentum equation reads as follows:
poV=—p(V-VV4+V . VV,)+JxB —Vp—V-H||l-+vV2 (V+V)) 3)

In this relation, the ion neoclassical tensor governs the generation of the poloidal ion equilibrium
flow. When the electron contribution is plugged into the Ohm’s law, the latter can be written such

that the tensor is part of the bootstrap current:
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where o = 1/(w,;74) is a measure of the diamagnetic contribution, 74 the Alfvén time and @,
the ion cyclotron frequency. We have assumed that the resistivity with neoclassical effects is
N =~ Nsp (Vei + Ue) / Vei With 1gp the Spitzer resistivity.

This model allows one to capture in a consistent way diamagnetic and neoclassical physics.

3. Neoclassical equilibrium
The first simulations including the viscous stress tensor have been undertaken to verify that it
satisfies the neoclassical equilibrium. The flux averaged divergence of the viscous stress tensor

[2] can be recovered from Eq. 1 and 2:
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Assuming that (B -V -II;) ~ 0, we obtain an expression for the ion poloidal velocity:
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The same recipe can be applied to calculate the bootstrap current:
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Evaluations on non-inductive discharge from Tore Supra (#32299, By = 0.11, B, = 0.66,
Gmin = 1.34) and on a hybrid discharge form JET (#77922, By = 2.35, ¢min = 1.09) are shown

(B-Jps) = (B*) ( 0 — Vig +keVro —kiViig + ke
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in Figures 1 and 2, respectively. We have taken experimental values for o (¢ = 0.03 for Tore
Supra, @ = 0.02 for JET). Good agreement is found between the analytical values and the
simulation performed with XTOR-2F. Close to the outer boundary, discrepancy is observed for
the averaged ion velocity. This is due to the curvature component in V - I1; that stands in the
perpendicular direction. Figure 1(right) shows how the flows evolves towards equilibrium after

~ 10%1y4. In fact, balance is reached much faster in the region /Yy < 0.8.
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Figure 1: Left: Equilibrium ion poloidal flow. Center: bootstrap current. Right: evolution of the ion

poloidal flow until equilbrium for Tore Supra shot #32299 at t = 233.8s.
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Figure 2: Left: Equilibrium ion poloidal flow. Center: bootstrap current. Right: evolution of the ion
poloidal flow until equilbrium for JET shot #77922 att = 10s.
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The JET equilibrium is characterized by a strong shaping of the equilibrium while the cross
section in Tore Supra is almost circular. The good match between analytical results and simula-
tion confirms that they are verified in a complex geometry. The poloidal ion flow and bootstrap
current are much larger and the evolution is much faster than in Tore Supra as the equilibrium
is reached after ~ 10°14. The faster evolution is mainly due to higher values of the neoclassical

coefficients in JET.

4. Growth rate of the (2,1) tearing mode in Tore Supra

Ion flow damping by neoclassical friction is expected to mitigate the growth of tearing
modes. Simulations have been performed for situations with (o« = 0.03) and without (o = 0)
diamagnetic effects. Figure 3 shows that the neoclassical tensor has a stabilizing effect in
both cases as expected from theory. Analytically we have the following relation for o¢ = 0:

4
(%) <% + %) = 1 where Ay is the growth rate without neoclassical effects and ¢,, = ,uchsg—;.
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on the growth rate is larger for a = 0. Figure 3: Mitigation of (2,1) tearing growth by neo-

. classical friction.
5. Conclusions f

The viscous stress tensor has been imple-

mented in a CGL form in the non linear MHD 1 ? /
[ 7
code XTOR-2F. It enables to recover the neo-
classical equilibrium. Simulations show that o = ,
the growth rate of the (2,1) tearing mode is ﬁ o ‘ *
mitigated by the neoclassical terms as can i
be expected by theory. When we add a (2,1) &
magnetic seed in the stable JET equilibrium 1.5
presented above, the new model enables per- € ¢ R/a . 2

turbation of the bootstrap current (Fig. 4). .
Figure 4: Perturbed part of the bootstrap current

Other modes are presents including the (1,1) o ) )
after the injection of a magnetic seed in JET.

kink mode close to the magnetic axis. The
holes in the bootstrap current are driving terms for NTMs and provide the basis for a future

study with the XTOR-2F code.
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