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Abstract

The Fokker-Planck equation is routinely used to describe collisional and quasilinear
transport processes in magnetized plasmas. It can be transformed using Lie-transform meth-
ods to eliminate the fast gyromotion time scale in order to derive an explicit guiding-center
Fokker-Planck operator in local guiding-center coordinates [1]. A 3D Fokker-Planck equa-
tion for the orbit-averaged distribution function is thus obtained in the low collisional-
ity regime. The expression of an orbit-averaged guiding-center collision operator with an
isotropic background particle distribution was recently derived [3].

Here, an orbit-averaged guiding-center collision operator involving an anisotropic lo-
cal operator is presented. Using the potentials derived by Braams and Karney [2] for the
Belaiev-Budker relativistic collision operator, Legendre-polynomial decompositions trun-
cated at first order of the collision coefficients are obtained. A guiding-center Lie transform
followed by orbit averaging yields explicit diffusion coefficients with an anisotropic correc-
tion to the background particle field. The formalism provides a self-consistent description

of neoclassical transport which can also be applied to wave-induced quasilinear transport.

In magnetized toroidal plasmas, the particle gyration Larmor radius p is small compared to
the characteristic magnetic length Lp. Particle motion can be expressed in terms of the parti-
cle energy & which is a constant of motion, and the adiabatic-invariant magnetic moment L.
Using the small parameter €g = p/Lp < 1, Lie-transform methods are used to derive a guiding-
center (GC) Fokker-Planck (FP) collision operator in GC coordinates (X,&’, i, ¢), where X
denotes the GC position and ¢ is the gyro-angle [1]. Axisymmetry provides a third invariant:
the toroidal canonical momentum Py which allows us to define a new set of GC coordinates
(v,6,0,p,8,0), where the flux-surface label ¥ = —(c/e) Py and the particle momentum
p =+/2mé& are constants of motion, the poloidal angle 6 is the orbit parameter, the pitch-angle

coordinate

. V/1—uBy(y)/&  for trapped particles,
So(W,&,1) = (D
o+\/1—uBy(y)/& for passing particles,
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is an adiabatic invariant and o = +-1. Here, By (V) is the minimum value of B on the flux-surface
v.

In the present paper, a FP collision operator with a non-uniform anisotropic background dis-
tribution is explicitly derived. In the low-collisionality regime, a 3-D orbit-averaged FP equation
is thus obtained in the space of invariants I* = (¥, p, &). Simplified orbit-averaged expressions
are determined in the thin-orbit width approximation characterized by &y, = €pq/e < 1, where

q is the safety factor and € = r/R is the local inverse aspect ratio.

Local anisotropic operator
Starting with a divergence-form local collision operator C [f;] = —d/dp- (Kf; —D-d f;/dp)
between test-particle and background-particle distributions f; and fy, we perform a Legendre

decomposition of fy (x,p,&) = [ ](X p)+&f, y (x,p) + ... where the local pitch-angle coor-

dinate is § = G\/ 1—(1—&2) B/Bo (W). Anisotropic contributions will therefore be obtained
from the first-order Legendre term. Using the results from Braams and Karney [2], the local

collision coefficients can be rewritten with isotropic and anisotropic first-order Legendre terms,
0 I 1
K=—(v+ev") pe,— (1-£) vi'le, @)

_52
p

D= (DEO] + éDE”) eye,+ (D,[O} + §D£”> (I—epe,)+ (epe;; + egep) 3)

where [¢]-terms are solely moment integrals of respective Legendre coefficients fs[,g].

GC dynamics
For a GC distribution Fy. (7,V¥,0,p, &), the FP equation reads, using the collision time or-

dering €, = L/ Ay in terms of the mean free path A,,

ch JF,
£ro0—-2° 89 © = &yCyc [Fyc.- )

The GC collision operator is expressed in divergence form,

1 d a a oF
Cgc[FgC]:_%ﬁ {/gc (K F— Dglcjalb)} ®)

where _Z,. denotes the GC Jacobian and the convection and diffusion GC coefficents respec-
tively read, defining (...) gc as the gyro-averaging and T;cl the GC push-forward operator [1],
~1 b ~1 b
Ko = (TK-A%) Db — <Agc Ty ]D)-Agc>gc. 6)
The projection vectors Ay, are the guiding-center Poisson bracket of the particle position with

guiding-center coordinates, with known explicit expressions [3].
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Orbit-averaged FP equation

The orbit-averaging operation is expressed as (... ), = Tﬁl $,d6/6..., where T4 is the orbit
time. In low collisionality regimes, the guiding-center distribution F (0) (‘L’,W, p,&p) is poloidal-
angle independant which allows it to commute with orbit average. We place ourselves in the

thin-orbit approximation &, < 1. The orbit-averaged Fokker-Planck equation reads to first order

in €p,&y:
dF©) 1 JF )
aor F(0) _ pab(0) 97~
£ = D 7
Tar Y g0l [/ﬁ ( “ o || @
with KgL < > o and Dgc( ) = <Dglc’ > o [3]. The distribution therefore evolves on the colli-

sion time scale &; = &,. The Jacobian ¢, = t5vp?|&o|/ (27Bo (¥)) is an invariant of the GC

motion. The orbit-averaged coefficients read, with isotropic and anisotropic contributions

K70 < Vo > < : il >
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where vl[@ , vtm , Dlw , D,m and D[f} are functions of GC coordinates (v, 0, p,&) and ¥ = B/By (V).

We also have the radial deviation § ¥ = y — ¥ and the GC vorticity parameter Ag. [1]. This for-
malism may be applied to other conservative operators and expressions for the ohmic electric

field contribution in the FP equation have been similarly derived.

Bootstrap current in the Lorentz limit

In the Lorentz limit Z > 1 the coefficients of the particle collision operator reduce to D; =
Veip? /2 while v and D; can be neglected. The bootstrap current is the flux-surface averaged
current density obtained in the presence of collisions. It is evaluated here in the large aspect ratio

/2 such that € K €, &y < 1. Performing

and thin orbit approximations, with the ordering & ~ 8;
an expansion in &y of the distribution function in the steady-state FP equation, it is shown that

Jp = <Zev|f)>¢ reduces [3] to

dlnn  dInT
hn 4am } (14)

Iy (t,9) = —ey FE (w)R,n(y)T
b 1.9) = ey ST R )T () | o+
It can be shown that for the effective trapped particle fraction FEI, limg_o FE(r) = 1.46, /6 +
O (&) with circular concentric flux surfaces, which corresponds to previous calculations using
drift-kinetic theory [4].

The implementation of this operator in the 3-D Fokker-Planck code LUKE [4] is under way.

It will describe neoclassical transport and thus include the bootstrap current consistently with

other sources (radio-frequency, ohmic heating) in general current drive calculations.
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