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Abstract

The Fokker-Planck equation is routinely used to describe collisional and quasilinear

transport processes in magnetized plasmas. It can be transformed using Lie-transform meth-

ods to eliminate the fast gyromotion time scale in order to derive an explicit guiding-center

Fokker-Planck operator in local guiding-center coordinates [1]. A 3D Fokker-Planck equa-

tion for the orbit-averaged distribution function is thus obtained in the low collisional-

ity regime. The expression of an orbit-averaged guiding-center collision operator with an

isotropic background particle distribution was recently derived [3].

Here, an orbit-averaged guiding-center collision operator involving an anisotropic lo-

cal operator is presented. Using the potentials derived by Braams and Karney [2] for the

Belaiev-Budker relativistic collision operator, Legendre-polynomial decompositions trun-

cated at first order of the collision coefficients are obtained. A guiding-center Lie transform

followed by orbit averaging yields explicit diffusion coefficients with an anisotropic correc-

tion to the background particle field. The formalism provides a self-consistent description

of neoclassical transport which can also be applied to wave-induced quasilinear transport.

In magnetized toroidal plasmas, the particle gyration Larmor radius ρ is small compared to

the characteristic magnetic length LB. Particle motion can be expressed in terms of the parti-

cle energy E which is a constant of motion, and the adiabatic-invariant magnetic moment µ .

Using the small parameter εB ≡ ρ/LB� 1, Lie-transform methods are used to derive a guiding-

center (GC) Fokker-Planck (FP) collision operator in GC coordinates (X,E ,µ,ϕ), where X

denotes the GC position and ϕ is the gyro-angle [1]. Axisymmetry provides a third invariant:

the toroidal canonical momentum Pφ which allows us to define a new set of GC coordinates

(ψ,θ ,φ , p,ξ0,σ), where the flux-surface label ψ ≡ −(c/e)Pφ and the particle momentum

p≡
√

2mE are constants of motion, the poloidal angle θ is the orbit parameter, the pitch-angle

coordinate

ξ0 (ψ,E ,µ)≡





√
1−µB0 (ψ)/E for trapped particles,

σ
√

1−µB0 (ψ)/E for passing particles,
(1)
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is an adiabatic invariant and σ =±1. Here, B0 (ψ) is the minimum value of B on the flux-surface

ψ .

In the present paper, a FP collision operator with a non-uniform anisotropic background dis-

tribution is explicitly derived. In the low-collisionality regime, a 3-D orbit-averaged FP equation

is thus obtained in the space of invariants Ia ≡ (ψ, p,ξ0). Simplified orbit-averaged expressions

are determined in the thin-orbit width approximation characterized by εψ = εBq/ε � 1, where

q is the safety factor and ε = r/R is the local inverse aspect ratio.

Local anisotropic operator

Starting with a divergence-form local collision operator C [ fs]≡−∂/∂p · (K fs−D ·∂ fs/∂p)

between test-particle and background-particle distributions fs and fs′ , we perform a Legendre

decomposition of fs′ (x, p,ξ ) ≡ f [0]
s′ (x, p)+ ξ f [1]

s′ (x, p)+ . . . where the local pitch-angle coor-

dinate is ξ ≡ σ
√

1−
(
1−ξ 2

0
)

B/B0 (ψ). Anisotropic contributions will therefore be obtained

from the first-order Legendre term. Using the results from Braams and Karney [2], the local

collision coefficients can be rewritten with isotropic and anisotropic first-order Legendre terms,

K =−
(

ν [0]
l +ξ ν [1]

l

)
pep−

(
1−ξ 2)ν [1]

t eξ , (2)

D =
(

D[0]
l +ξ D[1]

l

)
epep +

(
D[0]

t +ξ D[1]
t

)
(I− epep)+

1−ξ 2

p
D[1]
×
(
epeξ + eξ ep

)
, (3)

where [`]-terms are solely moment integrals of respective Legendre coefficients f [`]
s′ .

GC dynamics

For a GC distribution Fgc (τ,ψ,θ , p,ξ0), the FP equation reads, using the collision time or-

dering εν ≡ LB/λν in terms of the mean free path λν ,

ετ
dFgc

dτ
+ θ̇

∂Fgc

∂θ
= ενCgc [Fgc ] . (4)

The GC collision operator is expressed in divergence form,

Cgc [Fgc ] =− 1
Jgc

∂
∂ Ia

[
Jgc

(
Ka

gcF−Dab
gc

∂F
∂ Ib

)]
, (5)

where Jgc denotes the GC Jacobian and the convection and diffusion GC coefficents respec-

tively read, defining 〈. . .〉gc as the gyro-averaging and T−1
gc the GC push-forward operator [1],

Ka
gc =

〈
T−1

gc K ·∆a
gc
〉

gc, Dab
gc =

〈
∆a

gc ·T−1
gc D ·∆b

gc

〉
gc

. (6)

The projection vectors ∆a
gc are the guiding-center Poisson bracket of the particle position with

guiding-center coordinates, with known explicit expressions [3].
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Orbit-averaged FP equation

The orbit-averaging operation is expressed as 〈. . .〉O ≡ τ−1
O

¸

O dθ/θ̇ . . . , where τO is the orbit

time. In low collisionality regimes, the guiding-center distribution F(0) (τ,ψ, p,ξ0) is poloidal-

angle independant which allows it to commute with orbit average. We place ourselves in the

thin-orbit approximation εψ� 1. The orbit-averaged Fokker-Planck equation reads to first order

in εB,εψ :

ετ
dF(0)

dτ
=−εν

1
JO

∂
∂ Ia

[
JO

(
Ka(0)

gc F(0)−Dab(0)
gc

∂F(0)

∂ Ib

)]
, (7)

with Ka(0)
gc =

〈
Ka

gc
〉
O

and Dab(0)
gc =

〈
Dab

gc
〉
O

[3]. The distribution therefore evolves on the colli-

sion time scale ετ = εν . The Jacobian JO ≡ τOvp2|ξ0|/(2πB0 (ψ)) is an invariant of the GC

motion. The orbit-averaged coefficients read, with isotropic and anisotropic contributions


 Kψ(0)

gc

Dpψ(0)
gc


=− εψ



〈

δψ


 ν [0]

l

D[0]
l /p



〉

O

+ξ0

〈
ξ
ξ0

δψ


 ν [1]

l

D[1]
l /p



〉

O

+
1−ξ 2

0
ξ0

〈
Ψξ0

ξ
δψ


 −ν [1]

t

D[1]
× /p



〉

O


 , (8)


 K p(0)

gc

Dpp(0)
gc


=

〈
ν [0]

l p

D[0]
l

〉

O

+ξ0

〈
ξ
ξ0


 ν [1]

l p

D[1]
l



〉

O

− εB
1−ξ 2

0
2ξ0

〈
Ψξ0

ξ
λgc


 ν [1]

l p

D[1]
l



〉

O

,

(9)

 Kξ0(0)

gc

Dpξ0(0)
gc


=

1−ξ 2
0

2ξ0



〈(

εBλgc + εψδψ
)

 −ν [0]

l

D[0]
l /p



〉

O

+2ξ0

〈
ξ
ξ0


 −ν [1]

t

D[1]
× /p



〉

O

+ εψ
1−ξ 2

0
2ξ0

〈
Ψξ0

ξ
δψ


 −ν [1]

t

D[1]
× /p



〉

O


 , (10)

Dψψ(0)
gc = 0, (11)

Dξ0ξ0(0)
gc =

1−ξ 2
0

p2

[〈
ξ 2

Ψξ 2
0

(1− εBλgc)D[0]
t

〉

O

+ εψ
1−ξ 2

0

ξ 2
0

〈
δψD[0]

t

〉
O

+ξ0

〈
ξ 3

Ψξ 3
0

(1− εBλgc)D[1]
t

〉

O

− εB
1−ξ 2

0
2ξ0

〈
ξ
ξ0

λgcD[1]
t

〉

O

+εψ
1−ξ 2

0
ξ0

〈
ξ
ξ0

δψD[1]
t

〉

O

+
1−ξ 2

0
ξ0

〈
ξ
ξ0

(
εBλgc + εψδψ

)
D[1]
×

〉

O

]
, (12)

Dψξ0(0)
gc =− εψ

1−ξ 2
0

p2ξ0

[〈
δψD[0]

t

〉
O

+ξ0

〈
ξ
ξ0

δψ
(

D[1]
t +D[1]

×
)〉

O

]
, (13)
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where ν [`]
l , ν [`]

t , D[`]
l , D[`]

t and D[`]
× are functions of GC coordinates (ψ,θ , p,ξ ) and Ψ≡B/B0 (ψ).

We also have the radial deviation δψ = ψ−ψ and the GC vorticity parameter λgc [1]. This for-

malism may be applied to other conservative operators and expressions for the ohmic electric

field contribution in the FP equation have been similarly derived.

Bootstrap current in the Lorentz limit

In the Lorentz limit Z� 1 the coefficients of the particle collision operator reduce to Dt =

νei p2/2 while ν and Dl can be neglected. The bootstrap current is the flux-surface averaged

current density obtained in the presence of collisions. It is evaluated here in the large aspect ratio

and thin orbit approximations, with the ordering ε ∼ ε1/2
B such that εB� ε,εψ � 1. Performing

an expansion in εψ of the distribution function in the steady-state FP equation, it is shown that

Jb =
〈

Zev‖b̂
〉

φ
reduces [3] to

Jb (t,ψ) =−εψFeff
t (ψ)Rpn(ψ)T (ψ)

[
d lnn
dψ

+
d lnT
dψ

]
. (14)

It can be shown that for the effective trapped particle fraction Feff
t , limε→0 Feff

t (r) = 1.46
√

ε +

O (ε) with circular concentric flux surfaces, which corresponds to previous calculations using

drift-kinetic theory [4].

The implementation of this operator in the 3-D Fokker-Planck code LUKE [4] is under way.

It will describe neoclassical transport and thus include the bootstrap current consistently with

other sources (radio-frequency, ohmic heating) in general current drive calculations.
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