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Sawtooth oscillations can redistribute theα particles, thus modifying the power deposition

profile and increasingα particle losses and wall loading. In addition,α transport from the

core to the outer region can trigger other instabilities. Most previous studies of the effect of

sawtooth crashes onα particle confinement have employed a phenomenological description of

the evolution of the flux surfaces and included only the dominant (1,1) internal kink mode [1].

Our method consists in calculating the exactα particle trajectories in the total electric and

magnetic fields (equilibrium plus perturbation). The approach is similar to that employed by

Zhao and White [2] but includes some important differences: 1) The information regarding the

space and time dependence of the perturbation is taken from the experimental results published

in Ref. [3]. This is the most important feature of our model because it allows us to study the

evolution of theα particles in the presence of the experimentally determinedperturbations. 2)

The exact trajectories are calculated, no guiding center approximation is employed. Although

this requires significantly larger computational resources we believe it is justified because the

width of the orbits can be larger than the typical scale length of the mode structure.

Equilibrium and perturbed fields

The equilibrium magnetic field is obtained by expanding the Grad-Shafranov (GS) equation

in powers of the inverse aspect ratio (ε) and including only the first two terms in the solution. In

toroidal coordinates:ψ(x,φ) = ψ0(x)+ εψ1(x,φ), whereψ is the poloidal flux,x the normal-

ized minor radius (x= ρ/a) andφ the poloidal angle. We normalizeψ with B0πa2, whereB0 is

the external toroidal field at the geometric axis (R0), and assume that the pressure and poloidal

current depend onψ as: p = p1ψ2; I2 = I2
0 + I2

1ψ2, wherep is normalized withB2
0/8π and I

with B0cR0/2 (Gaussian units are employed). Substituting this in the GSequation we obtain

ψ(x,φ) = CJ0(kx)+ ε
cosφ

2

{
C

[
xJ0(kx)− σx2

k
J1(kx)

]
−DJ1(kx)

}
(1)

whereJ0(kx) andJ1(kx) are Bessel functions,σ = 4p1/ε2 andk2 = 4(p1+ I2
1)/ε2. The bound-

ary of the plasma is at thex = 1 surface, where we request the flux to be zero. Then,k has
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to be a zero ofJ0 andD = σC/k. C is determined by fixing the poloidal field at the plasma

boundary andI0 is related toB0. With the normalization employedI0 = 1. Finally, σ fixes the

plasmaβ . Knowing the poloidal flux we can calculate the equilibrium magnetic field. Theq

profile obtained forε = 1/3, p1 = 0.05 Bpol(x = 1,φ = 0) = 0.155 is shown in Fig. 1. For

ITER-like parameters (B0 = 5.3× 104G, a = 2 m, R0 = 6 m) the toroidal current equals 8.7

MA, which is consistent with the ITER value (15MA), if we consider that ITER hasκ = 1.7.
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Figure 1: Safety factor and flux surfaces.

The major approximation employed in our

model is the use of a "cylindrical", instead of

toroidal, displacement eigenfunction. This is

justified by the following reasons: 1) The ex-

perimental information provided in [3] cor-

responds to a "cylindrical’ mode. The ampli-

tude of the displacement eigenfunction de-

pends only on the minor radius (in toroidal

coordinates) and the poloidal and toroidal de-

pendences are included only in the phase (see

eq. (2) of [3] ). 2) As already noted by Zhao and White [2], the effective aspect ratio of the flux

surfaces affected by the sawtooth (inside theq = 1 surface) is larger than the aspect ratio of the

device (R0/a). 3) The perturbed fields can be calculated analytically.

Ideal MHD is used to calculate the perturbed magnetic field produced by a known displace-

ment fieldB1 = ∇× (ξ ×B), whereB1 is the perturbed magnetic field,ξ is the displacement

andB the equilibrium field calculated above. We note that this equation means that the per-

turbed vector potential is perpendicular to the equilibrium magnetic field (A1 = ξ ×B). This is

different from the assumption used in [2], whereA1 is assumed to be parallel toB. To be con-

sistent with the spatial dependence assumed below for the displacement, only the "cylindrical"

part ofB is used to calculateB1 (but the fullB is used to calculate particle orbits).

Following the analysis presented in Ref. [3] we assume that two modes are present (the(3,3)

mode is not included in this work) and thex component of the displacement can be written as

ξx(x,φ ,θ , t) = ξ 11
x (x, t)cos(φ −θ −ωt)+ξ 22

x (x, t)cos[2(φ −θ −ωt)] (2)

whereθ is the toroidal (azimuthal) angle andω is the frequency. Considering incompressible

displacements (∇ ·ξ = 0) and following [4] we can write the other components ofξ in terms of

ξx. The electric field is obtained from the ideal Ohm’s law:

E1 =−v1×B
c

, v1 =
∂ξ
∂ t

. (3)
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To proceed we need to specifyξ 11
x (x, t) andξ 22

x (x, t), which are taken from the experimental

information provided in Fig. 4 (for thex dependence) and Fig. 3 (for the time dependence) of

Ref. [3]. Separating the space and time dependence as:ξ mn
x (x, t) = ξ mn

0 (t) f mn(x)

we introduce the followingf mn(x):

f 11(x)=
1
2
{1− tanh[δ (x−xs)]} , f 22(x)=





cos2
[

π
2

(
x−x2

x2

)]
+ e−x2/x2

2

4 ≡ f 22
c (x) for 0≤ x≤ xa

0 for xa ≤ x≤ 1 s.t. f 22
c (xa) = 0

(4)

wherexs is the (minor) radius of theq = 1 surface,x2 ≃ 0.35 andδ is a numerical constant

adjusted to get the desired slope atx = xs (typically δ ∼ 20). For the time dependence we use

the same model as in [2] but with different growth and decay rates for each mode

Results

A fourth order Runge-Kutta method is employed to calculate the exact particle trajectories

in the time dependent fields. Collisions are not included because the simulation time is much

shorter than the collision time. The time step is taken smallenough to guarantee that, when

E1 is not included, the energy and azimuthal (toroidal) component of the canonical momentum

(Pθ ) are conserved. As a first step in the study ofα particle dynamics during sawteeth we

consider groups of particles having the same energy distributed on a given flux surface. The

initial conditions for each particle are determined using the following procedure: 1) A flux

surface is chosen. 2) A random value is generated for the poloidal angle. 3) The energy of

the particle is fixed (E0 ≤ 3.5 MeV) and a random (isotropic) initial direction is chosen. The

particles are followed from the time the (2,2) mode appears until it disappears.

As an example of the effect of the perturbation on individualparticle orbits we show, in Fig.

2 (left), the instantaneous position of the guiding center calculated from the exact orbit of a well

trapped 3.5 MeV particle. The bounce frequency for this particle isωbounce= 1.3975×10−3Ωα ,

whereΩα is the alpha cyclotron frequency calculated withB0. For a perturbation withω =

2.0×10−4Ωα including theE1 andB1 produced by the (1,1) and (2,2) modes is added to the

equilibrium field, the orbit (for the same initial conditions) changes completely and the particle

switches from trapped to passing, back to trapped, etc. Its energy, however, changes very little.

This is shown in Fig. 2 central, which presents a plot of the particle’s energy and parallel velocity

as a function of time. When the frequency is changed toω = ωbounce= 1.3975×10−3Ωα the

energy of the particle changes significantly while it switches between being trapped and passing.

This is shown in Fig. 2 right.
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Figure 2: Left: Banana orbit. Middle: Particle energy and parallel velocity for ω > ωbounce .

Right: Particle energy and parallel velocity forω = ωbounce.

To quantify the effect of the perturbation we introduce a "diffusion" coefficient defined as:

D =
〈(

xf
p−xf

u

)2
〉

/∆τ (5)

wherexf
p and xf

u are the final values ofx (for each particle) with and without perturbation,

respectively,∆τ is the time interval and〈〉 means average over a large number of particles. Fig.

3 shows D as a function of the energy for several flux surfaces.No sharp maximum is observed.
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Figure 3: D vs particle energy without perturbation (full line), with b1 (dot line) and with b1

and e1 (dashed line) for several initial flux surfaces.

Future studies will be devoted to calculate energy and particle fluxes following a large number

of α particles distributed inside theq= 1 surface according to the expected density and velocity

distributions.

Financial support from the ECOS-MINCyT Research Grant No. A09E02 is gratefully ac-

knowledged.

References

[1] Ya. I. Kolesnichenko et al., Nucl. Fusion7, 1325 (2000)

[2] Y. Zhao and B. White, Phys. Plasmas4 (4) (1997)

[3] V. Igochine et al., Nuc. Fusion47, 23-32 (2007)

[4] J. P. Freidberg,"Ideal Magneto Hydrodynamics”, Plenun Press, Chapter 9, (1987)

38th EPS Conference on Plasma Physics (2011) P2.116


