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Sawtooth oscillations can redistribute theparticles, thus modifying the power deposition
profile and increasingr particle losses and wall loading. In additiom, transport from the
core to the outer region can trigger other instabilities.sMoarevious studies of the effect of
sawtooth crashes am particle confinement have employed a phenomenologicatigésa of
the evolution of the flux surfaces and included only the damir{1,1) internal kink mode [1].

Our method consists in calculating the exacparticle trajectories in the total electric and
magnetic fields (equilibrium plus perturbation). The ag@tois similar to that employed by
Zhao and White [2] but includes some important differencgd:He information regarding the
space and time dependence of the perturbation is taken freexperimental results published
in Ref. [3]. This is the most important feature of our modeldes® it allows us to study the
evolution of thea patrticles in the presence of the experimentally determpesturbations. 2)
The exact trajectories are calculated, no guiding centeroegimation is employed. Although
this requires significantly larger computational resosnae believe it is justified because the
width of the orbits can be larger than the typical scale lergthe mode structure.

Equilibrium and perturbed fields

The equilibrium magnetic field is obtained by expanding tmadsShafranov (GS) equation
in powers of the inverse aspect rat&) &nd including only the first two terms in the solution. In
toroidal coordinatesy(x, @) = Wo(X) + eP1(X, @), wherey is the poloidal fluxx the normal-
ized minor radiusX = p/a) andg the poloidal angle. We normalizg with Byrta?, whereBy is
the external toroidal field at the geometric ax#®g), and assume that the pressure and poloidal
current depend o as: p = p1@?;12 = 13 +12¢?, wherep is normalized withB3/8r and|
with BocRy/2 (Gaussian units are employed). Substituting this in thee@tion we obtain

2
i) = Caog -+ e [ oy - %p-ako] Doy} ®

whereJy(kx) andJ; (kx) are Bessel functionsg = 4p; /&2 andk? = 4(py +12) /2. The bound-
ary of the plasma is at the= 1 surface, where we request the flux to be zero. Thdms



38" EPS Conference on Plasma Physics (2011) P2.116

to be a zero ofly andD = oC/k. C is determined by fixing the poloidal field at the plasma
boundary andp is related toBp. With the normalization employeld = 1. Finally, o fixes the
plasmaf. Knowing the poloidal flux we can calculate the equilibriunagnetic field. Theg
profile obtained fore = 1/3, p1 = 0.05 Bpoi(X = 1,¢ = 0) = 0.155 is shown in Fig. 1. For
ITER-like parametersBy = 5.3 x 10°G, a= 2 m, Ry = 6 m) the toroidal current equals 8.7
MA, which is consistent with the ITER value (1A), if we consider that ITER has = 1.7.
The major approximation employed in our
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pends only on the minor radius (in toroidal

coordinates) and the poloidal and toroidal de- Figure 1: Safety factor and flux surfaces.
pendences are included only in the phase (see
eg. (2) of [3]). 2) As already noted by Zhao and White [2], theetive aspect ratio of the flux
surfaces affected by the sawtooth (insidedhe 1 surface) is larger than the aspect ratio of the
device Ro/a). 3) The perturbed fields can be calculated analytically.

Ideal MHD is used to calculate the perturbed magnetic fietdipced by a known displace-
ment fieldB; = O x (¢ x B), whereB; is the perturbed magnetic field,is the displacement
andB the equilibrium field calculated above. We note that thisadigm means that the per-
turbed vector potential is perpendicular to the equilibrionagnetic fieldA; = & x B). This is
different from the assumption used in [2], whéke is assumed to be parallel Bx To be con-
sistent with the spatial dependence assumed below for §pdadement, only the "cylindrical”
part of B is used to calculatB; (but the fullB is used to calculate particle orbits).

Following the analysis presented in Ref. [3] we assume thattades are present (t(@ 3)

mode is not included in this work) and tke&eomponent of the displacement can be written as
Ex(x, 9. 0,1) = &H(xt) cog 9 — 6 — wt) + & (x,t) cog2(p— 6 — wt)] (2)

where@ is the toroidal (azimuthal) angle and s the frequency. Considering incompressible
displacementd(- ¢ = 0) and following [4] we can write the other component£ah terms of
éx. The electric field is obtained from the ideal Ohm’s law:

vix B 0E
Ei=-— =
1 c Vi1 ot
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To proceed we need to speci¢(x,t) and E2?(x,t), which are taken from the experimental
information provided in Fig. 4 (for th& dependence) and Fig. 3 (for the time dependence) of
Ref. [3]. Separating the space and time dependendgldsx,t) = &5"(t) f™"(x)

we introduce the following ™"(x):

m(xX e X% _ <22
fll(X)=%{1—tanh[5(x—xs)]}, fZZ(X){ C°52[2< %2 ﬂ + &2 =2 for0<x < xq

0forxg <x<1s.t.f2%(xq) =0
(4)
whereXs is the (minor) radius of thg = 1 surfacex, ~ 0.35 andd is a numerical constant

adjusted to get the desired slopexat Xs (typically & ~ 20). For the time dependence we use

the same model as in [2] but with different growth and decégsréor each mode

Results

A fourth order Runge-Kutta method is employed to calculatedkact particle trajectories
in the time dependent fields. Collisions are not included bgedhe simulation time is much
shorter than the collision time. The time step is taken smatlugh to guarantee that, when
E; is not included, the energy and azimuthal (toroidal) congpdof the canonical momentum
(Py) are conserved. As a first step in the studyooparticle dynamics during sawteeth we
consider groups of particles having the same energy digéibon a given flux surface. The
initial conditions for each particle are determined usihg following procedure: 1) A flux
surface is chosen. 2) A random value is generated for thedablangle. 3) The energy of
the patrticle is fixedEy < 3.5 MeV) and a random (isotropic) initial direction is chosen. The
particles are followed from the time the, @ mode appears until it disappears.

As an example of the effect of the perturbation on individagatticle orbits we show, in Fig.
2 (left), the instantaneous position of the guiding censédcwated from the exact orbit of a well
trapped 3.5 MeV particle. The bounce frequency for thisiperts wyounce= 1.3975x 103Qq,
whereQ, is the alpha cyclotron frequency calculated wigfy For a perturbation withw =
2.0 x 104Q including theE;1 andB; produced by the (1) and (22) modes is added to the
equilibrium field, the orbit (for the same initial conditihchanges completely and the particle
switches from trapped to passing, back to trapped, etchésyg, however, changes very little.
This is shown in Fig. 2 central, which presents a plot of théigla’s energy and parallel velocity
as a function of time. When the frequency is changedte wyounce= 1.3975x 103Q, the
energy of the particle changes significantly while it swéslbetween being trapped and passing.
This is shown in Fig. 2 right.
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Figure 2: Left: Banana orbit. Middle: Particle energy andatiat velocity for w > twhounce -

Right: Particle energy and parallel velocity f@r= tyounce

To quantify the effect of the perturbation we introduce aftdifon” coefficient defined as:

D— <(x{_,—x> >/AT (5)

WherexE, and xlﬂ are the final values of (for each particle) with and without perturbation,
respectivelyAr is the time interval and) means average over a large number of particles. Fig.

3 shows D as a function of the energy for several flux surfadesharp maximum is observed.
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Figure 3: D vs patrticle energy without perturbation (fufid), with b1 (dot line) and with bl

and el (dashed line) for several initial flux surfaces.

Future studies will be devoted to calculate energy andgaftuxes following a large number
of a particles distributed inside theg= 1 surface according to the expected density and velocity
distributions.
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