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Introduction

One of the dominant sources of toroidal torque in current tokamak experiments is neutral

beam injection (NBI) that can impart toroidal rotation in the injection direction through both

the collisional slowing-down process and the charge separation of fast neutrals. The charge

separation stemming from the radial deviation from the birth surface of fast ions produces the

radial current of fast ions. To maintain quasi-neutrality, a plasma naturally produces the radial

current flowing in the direction opposite to the fast-ion radial current, leading to a ~j×~B torque

[1, 2]. This phenomenon is due to the property of a large dielectric constant of a plasma [3]

and the radial current is believed to be a polarization current. The polarization current is in

proportion to the temporal variation of the radial electric field Er and, thus, is capable of quickly

compensating for the sudden fast-ion current due to the onset of NBI. Given a plasma with

constant NBI in a steady state, the charge separation and the resultant ~j×~B torque must persist

as long as NBI is activated, but Er has to be constant over time, implying that the polarization

current no longer plays a role in compensating for the fast-ion radial current. In a steady state,

the radial current must be driven by some mechanisms other than the polarization. To investigate

the characteristics of a ~j×~B torque stemming from the charge separation in both transient and

steady-state phases, we analytically derive the equation in a rigorous manner, stipulating the

neoclassical relationship between the radial electric field and radial current in tokamak plasmas,

especially when heated by NBI.

The one-dimensional transport code TASK/TX [4] consisting of two-fluid equations coupled

with Maxwell’s equation has already produced the ~j×~B torque in its system solely using the

estimated source profiles of electrons and fast ions [5], with the aid of an orbit-following Monte

Carlo code, OFMC [6]. This fact means that, unlike conventional transport codes, the basis

equations of TASK/TX may be essentially capable of reproducing the characteristics derived

by the above-mentioned equation. Accordingly, it is important to firmly establish an analytical

framework that enables TASK/TX to successfully reproduce a ~j×~B torque, by examining the
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basis equations of TASK/TX.

The relationship between Er and the radial current

In axisymmetric flux-surface coordinates (ψ,θ ,φ), the radial Ampère’s law is given by

ε0
∂
∂ t

(
〈|∇ψ |2〉∂Φ

∂ψ

)
= 〈~jtot ·∇ψ〉, (1)

where the brackets denote the flux-surface average and ~jtot is the current summed over the

species including fast ions, i.e. ~jtot ≡ ~j +~jfast. Other variables follow conventional notation.

Initially we consider the moment equation as follows:

msns
d~us

dt

∣∣∣∣
~x

=−∇ps−∇ ·↔π s + esns(~E +~us×~B)+~Rs, (2)

where
↔
π s denotes the viscosity tensor for species s; and ~Rs, the exchange of momentum. Taking

the toroidal projection, R2∇φ , of (2) and the flux surface-average gives

〈~js ·∇ψ〉=−〈R2∇φ · (~RC
s + esns~E)〉+msns

〈
R2∇φ · ∂~us

∂ t

〉
+ 〈R2∇φ · (∇ ·↔π s−~RnC

s )〉,

where the friction term has been decomposed into the first-order Coulomb friction force ~RC
s and

the non-Coulomb friction force ~RnC
s ≡ ~Rs−~RC

s , which is usually small compared to ~RC
s . To first

order in transport ordering δ , the stress in a magnetized plasma may be approximated by the

Chew-Goldberger-Low stress and this form of the stress conserves toroidal angular momentum

in an axisymmetric system. The remaining stress may be due mainly to the turbulence. We sum

〈~js ·∇ψ〉 over the plasma species to obtain the radial current as follows:

〈~j ·∇ψ〉= 〈~jp ·∇ψ〉+ ∑
s=e,i

[
〈R2∇φ ·∇ ·↔π s

(2)〉−〈R2∇φ ·~RnC
s 〉

]
, (3)

where we have defined the polarization current as 〈~jp ·∇ψ〉 ≡ ∑s=e,i msns∂/∂ t〈Rusφ 〉.
Using the first-order incompressible flow within the flux surface,~us = ωsR2∇φ + ûsθ~B, where

ωs denotes the diamagnetic frequency and ûsθ , the contravariant component of the poloidal

velocity, we have 〈Rusφ 〉 = (I/〈B2〉)〈Bus‖〉+(〈R2〉/〈B2〉)〈B2
θ 〉(1 + 2q̂2)ωs. Here, the factor q̂

is defined by q̂2 = I2/(2〈B2
θ 〉)(〈1/R2〉−1/〈R2〉), identical to the safety factor q in the limit of

the large aspect ratio. Because the pressure will be nearly constant relative to the decay time

of poloidal velocity, τp ∼ ετii, the polarization current can be written as the combination of the

temporal variation of the parallel flow and Er as follows:

〈~jp ·∇ψ〉= ∑
s=e,i

msns

[
I

〈B2〉
∂
∂ t
〈Bus‖〉−

〈R2〉
〈B2〉〈B

2
θ 〉(1+2q̂2)

∂
∂ t

∂Φ
∂ψ

]
. (4)
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Substituting the parallel momentum equation into (4) yields

〈~jp ·∇ψ〉=
I

〈B2〉 ∑
s=e,i

[
−〈~B ·∇ ·

↔
Πs〉+ 〈~B ·~RnC

s 〉
]
− 1

µ0v2
A
〈R2〉〈B2

θ 〉(1+2q̂2)
∂
∂ t

∂Φ
∂ψ

, (5)

where
↔
Π represents the neoclassical viscous stress. This is the final form of the polarization

current. The characteristic time scales on which the density, temperature, flow and poloidal

magnetic field vary are in general much longer than those of Er, when Er varies in response

to the non-ambipolar radial current. Only when considering the time scale much shorter than

those characteristic time scales, can we neglect the time change in the parallel flow in (4) [7].

We therefore see that the polarization current is simply proportional to the time change in Er.

We now define the vector in unit meters as~r∧ ≡ I/〈B2〉~B−R2∇φ . Substituting (5) into (3)

thus gives

〈~j ·∇ψ〉=− 1
µ0v2

A
〈R2〉〈B2

θ 〉(1+2q̂2)
∂
∂ t

∂Φ
∂ψ

+ ∑
s=e,i

[
− I
〈B2〉〈B ·∇ ·

↔
Πs〉+ 〈R2∇φ ·∇ ·↔π s

(2)〉+ 〈~r∧ ·~RnC
s 〉

]
. (6)

It is meaningful to introduce the relative dielectric constant as follows:

ε⊥ ≡ 1+
〈R2〉〈B2

θ 〉
〈|∇ψ|2〉

c2

v2
A

(1+2q̂2)≡ 1+κNC,

where κNC � 1 is called the relative neoclassical dielectric constant. This final form of the

radial current is substituted into (1) to obtain

ε0ε⊥〈|∇ψ|2〉 ∂
∂ t

∂Φ
∂ψ

= ∑
s=e,i

[
− I
〈B2〉〈B ·∇ ·

↔
Πs〉+ 〈R2∇φ ·∇ ·↔π s

(2)〉+ 〈~r∧ ·~RnC
s 〉

︸ ︷︷ ︸
≡As

]
+ 〈~jfast ·∇ψ〉, (7)

or (1) is substituted into (6) such that Φ vanishes to obtain

〈~j ·∇ψ〉=− κNC

1+κNC
〈~jfast ·∇ψ〉+ 1

1+κNC
∑

s=e,i
As '−〈~jfast ·∇ψ〉.

This equation clearly shows that the radial current almost completely offsets the fast-ion radial

current. It is important to understand that this relationship can essentially be obtained due solely

to the largeness of κNC, irrespective of a time scale in question. Note that it is the radial current

that appears on the LHS, not the polarization current; however, the polarization current may be

dominant relative to the components of 〈~j ·∇ψ〉 on the short time scale, as seen from (7).
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In a steady state, the time-dependent LHS of (7) vanishes and the first term of the RHS also

becomes nil. Replacing the non-Coulomb force term by the collisional torque term ~Sm
s , we have

− ∑
s=e,i

〈R2∇φ ·∇ ·↔π s
(2)〉= ∑

s=e,i
〈R2∇φ ·~Sm

s 〉+ 〈~jfast ·∇ψ〉, (8)

where the LHS represents the viscous stress due mainly to turbulence and the RHS represents

the torque input of collisions and the charge separation, respectively. This equation exhibits that

externally-applied torque including the ~j×~B torque and the dissipation of momentum would

eventually balance out in a steady state. We should be careful that the equation indicates that

the return radial current does flow and the orthogonal conduction component will predominate

in 〈~j ·∇ψ〉. The existence of the radial current can be readily seen by inserting (3) without the

polarization current and the non-Coulomb force directly into (8). In other words, in a steady

state the radial current is composed solely of the orthogonal conduction current, and its torque

is balanced by the torque created by the fast-ion current and the collisional torque.

The relationship between Er and the radial current in the TASK/TX code

Currently, the basis equations of TASK/TX [4] essentially build on a concentric circular equi-

librium, i.e. the orthogonal cylindrical coordinates (r,θ ,φ). One of the chief characteristics of

TASK/TX is that the quasi-neutrality condition is not explicitly imposed on the code; instead,

the continuity equations for all charged particles are solved coupled with Gauss’s law. In this

sense, TASK/TX does not solve the Ampère’s law given in (1) directly, but the appropriate

combination of the continuity equations and Gauss’s law is found to yield the Ampère’s law.

Reducing the basis equations in a similar manner that is shown above, we finally have

ε0

(
1+

c2

v2
A

)
|∇ψ| ∂

∂ t
∂Φ
∂ r

= ∑
s=e,i

[
− I

B2 〈~B ·∇ ·
↔
Πs〉+ 〈R2∇φ ·∇ ·↔π s

(2)〉+RFs∧

]
+ jfast

r |∇ψ|,

which is almost equivalent to (7) on the LHS except for the dielectric constant. The discrepancy

in the dielectric constant stems from the coordinates adopted. This result enables us to confirm

that TASK/TX is essentially capable of reproducing the ~j×~B torque solely within its system.
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