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I. Introduction.
The edge region in a tokamak during L-mode is characterized by strong fluctuations of
plasma parameters, in particular, on the outer side of the torus. Occasionally, so-called
“blobs” (filamentary structures extended along the magnetic field and having radially and
poloidally isolated bumps on plasma density profile) are formed in the vicinity of core-edge
boundary and propagate to the SOL (e.g. see Ref. 1 and the references therein). Blobs
contribute ~50% of plasma particle transport in some vicinity of the last closed flux surface
[2]. However, an increase of relative amplitude of intermittent fluctuations further into SOL
[3] suggests that blobs dominate in far SOL plasma transport and plasma-wall interactions.
There is a large body of theoretical papers devoted to the study of dynamics of
individual blobs (e.g. see Ref. 4 and the references therein). However, practically all of these
studies adopt 2D fluid approach for blob governing equations by invoking different schemes
for closure of 3D plasma dynamic equations in the direction parallel to the magnetic field
lines. On our best knowledge only in Ref. 5, 6 3D dynamics of individual blobs was
considered in 3D with PIC and BOUT codes respectively, but with no detail analysis of the
results (although blobs were observed in edge plasma turbulence simulations, e.g. [7]).
Meanwhile 3D features can have a very important impact on blobs. For example, the
variation of blob’s plasma parameters along the magnetic field can result in electrostatic
potential variation, which can spin up plasma and, therefore, alter blob propagation
dynamics [4]. In addition, inhomogeneity of plasma parameters along and across the
magnetic field can result in the development of plasma instabilities (e.g. dissipative drift [8],

VT, [9], and Vy(E xB)[10-12] instabilities).
Here we consider 3D blob dynamics in the electrostatic approximation and present

both analytic estimates and initial results of 3D electrostatic simulation of the blob using the
BOUT++ code [13].

I1. Equations

We adopt simple slab geometry with magnetic field B = €,B in z-direction and effective
curvature of the magnetic field lines K=¢, /R in x-direction. We assume that plasma is
localized along the field lines at 0 <z <L, and limited by material targets at the boundaries.
To describe plasma dynamics we use vorticity and continuity equations:
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where n is the plasma density, M is the ion mass, c is the light speed, ¢ is the electrostatic
potential, d(...)/dt=a(...)/dt+(c/ B)(éZ X ch)-V(...) , T=const. is the electron temperature

(we assume zero ion temperature),
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o) 1s the plasma conductivity, and e is the elementary charge. At the boundaries the parallel
current and potential are related by sheath boundary condition

jsp =en(Cy {1 —exp(—e(p; - @g)/ T)} , 4)
where @ o T 1is the floating potential corresponding to a zero sheath current, C; =vT/M,
n, and @, are the density and potential at the target.

I11. Analytic estimates
Before we discuss the simulation results let us make some analytic estimates. First we notice
that potential variation along the magnetic field line caused by parallel current is smaller
than potential jump due to effective sheath resistivity for [14]
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where m is the electron mass, n, and A, are the plasma density and electron mean in the

bulk of the blob. For edge plasma conditions inequality (5) is usually fulfilled (we are not
considering very low temperature regimes like MARFE and detached divertor where
inequality (5) can be violated). In this case the only important potential variation along B
can be due to electron pressure/density variation.

As aresult, for large o, from Eq. (3) we find

T
cp=cpt+€£n(nb/nt). (6)
As one can see from Eq. (6), electrostatic potential depends on the blob density n, and,

therefore, can be inhomogeneous in both parallel and perpendicular directions. As a result,
both plasma polarization and corresponding blob dynamics can be altered by ExB plasma
rotation. Similar effects can be caused by inhomogeneous electron temperature [10].
Following Ref. 15 (see also Ref. 4) and considering torpedo-like shape of blob density

extended along B with cross-field scale 8, we find that the ExB rotation becomes
important for blob’s dynamics for
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However, this estimate is somewhat superficial because the impact of plasma instabilities
can be even more important for blob dynamics than plasma rotation.
Considering stability of plasma slab with plasma density inhomogeneity scale-length
O}, in electrostatic local approximation using Eq. (1-3) and boundary condition (4) assuming

no plasma density variation along the magnetic field we arrive to the following dispersion
equations
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where | is the integer number, o, = (2C, /Ly)(pek )™, 03 =2C2 /R8p, 0, = Cpek | /8y,

Wg = Vei (27517»61 / L||)2 (psk n )_2 , k| 1s the perpendicular wave number, p is the effective
ion gyro-radius, Vv is the electron-ion collision frequency, A is the electron mean free

path, and R is the tokamak major radius.
We are interested in the mode with 1=1, since the mode with 1=0 can be seen in 2D
modeling and was considered before. For 1=1 the maximum growthrate, y,,. , depends on
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the ratio Xg, =g /0. For Xgi<l (Xgx>1) Ymax ~®s (Ymax ~®g) is reached for
Wy ~ 0, (w5 ~wg) and the mode has dissipative drift (interchange) nature. For plasma

parameters used in our 2D and 3D simulations (plasma density 10%cm™ , electron

temperature 30 eV, B=30 kG, R=100 cm, L; = 103cm) we have Xgs > 1 so that the unstable

mode suppose to have an interchange structure.

IV. 3D modeling results

I0: dHob = de, y=C.0, t=2810-5 [0]
1)

Before we proceed with
2D simulation the discussions of our

S numerical  simulations
we should remind that
according to 2D
theoretical estimates
and numerical modeling
the most structurally
stable (in 2D case) blob
size corresponds to

Op ~ 0, =pq (Lﬁ /pSR)l/5 .

% 1ma

3D simulation

30; dBlob = dv, Lg=G, k=0 [3] t=11x10-8 [a] A=22x10-8 [n]

Smaller (bigger) blobs
are the subjects of KH
(RT) instability which
causes the

mushrooming
FTATIS (fingering) of the shape
of the blob.

10106 [a

In order to verify our
3D numerical
simulation with 2D
numerical results we
neglect pressure term in
the Ohm’s law. By that

3D simulation we eliminate an impact
30; d_Blob = 0.3dv, Lg=0, t=0 [a] tmtx19-1 [n] Of the drlft waves and
corresponding 3D

instabilities. In Fig. 1
(Fig. 2) we present
plasma density contours
found in the result of
2D and 3D numerical
simulations of blob dynamics with 0 =9, (8, =0.3x9,) and no pressure term in Ohm’s
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Fig. 2.

law. As we see we have coherent propagation of the blob in radial direction and for oy, =9,
and a mushrooming for 0, =0.3x0, due to nonlinear effects of the KH instability. In both

cases we have a very good agreement between 2D and 3D results.
Next we study the effect of dissipative instability on blob dynamics and proceed with
full Ohm’s law equation (3). In Fig. 3 we show plasma density contours for blob with
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O, =03x9d, found from 3D numerical simulation. 3D structure of developed plasma

instability is clearly seen in the simulation. However, blob still propagates radially with the
speed observed in 2D simulations at least for the time where 3D simulation results are
available. Unfortunately, further modeling is complicated by numerical problems. We notice
that according local stability analysis the most unstable mode corresponds to 1=3, meanwhile
in 3D simulations we see mode structure with I~10. The reason for such discrepancy is not
clear yet.

2 a0 - 050, g o - e V. Conclusions

We repot preliminary
results of 3D numerical
simulation  of  blob
dynamics with BOUT++
code. The main
motivation was studying
the impact of plasma
instabilities on  blob
propagation speed and
coherency. So far we
limited ourselves by
considering electrostatic

approximation. We
o — e found  that  although
Fig. 3. instability develops, the

blob still propagates
radially with the speed corresponding to 2D approximation. However, the work is in
progress and these conclusions should be considered as preliminary.
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