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Introduction

Figure 1: Illustration of an ELM in the

exhaust phase at the outboard side of a

tokamak. If an ELM filament (white) is

stopped and captured at e.g. the q = 4 sur-

face (green) an outer mode or current rib-

bon could be created [1]. Similarly a hole

(black) captured on a q = 3 surface could

create a palm tree mode (PTM) [2]. PTMs

and outer modes are possibly "twins".

Recent works report the existence of coherent

long-lived structures or current filaments in the

edge of tokamak plasmas. These are found as con-

fined current ribbons (outer modes) [1] or palm

tree modes (PTM) [2] in the edge of JET for ex-

ample. An intuitive model was proposed in [3]

which describes the genesis of these structures by

a blob/hole creation mechanism during the ELM.

ELM filaments with excess current [4], temperature

and density are treated as blobs whereas it is be-

lieved that they leave corresponding holes behind

due to current conservation considerations on short

time scales [5]. It therefore complements the MHD

description by a blob/hole or "quasi-particle" pic-

ture.

From pellet injection experiments in DIII-D and

Tore Supra it is known that maxima of the mass de-

position profiles are close to the magnetic q = 2 and

q = 3 surfaces. Low order rational surfaces appear

to slow down or even stop the polarization drift to-

wards the low field side of the plasma [6]. Similarly

∗see the Appendix of F. Romanelli et al., Proceedings of the 23rd IAEA Fusion Energy Conference 2010,

Daejeon, Korea
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it is to be expected that the lifetime of blobs and holes is increased in the vicinity of ratio-

nal surfaces. The ∇B polarisation of holes is opposite to blobs. Under the assumption that the

interchange drive of a polarised ELM-induced hole moves it into the proximity of a rational sur-

face with low q, it should be slowed down or even stopped. Furthermore, large holes and blobs

could close on themselves in the vicinity of a rational magnetic field line. For a closed filament,

charge interchange imbalance would be short-circuited by parallel currents which would stop

the filament completely. The result would be a closed, well localized filament with a signicantly

increased lifetime which can only be filled by slow perpendicular transport. Fig. 1 illustrates the

proposed events before the holes and blobs reach the resonant surfaces. In this way of think-

ing outer modes are ELM filaments which were not able to propagate to the scrape-off layer

whereas palm tree modes are signatures of ELM-induced holes. Nevertheless, the probability

to create PTMs is smaller because holes travel up the temperature gradient into regions with in-

creasing parallel transport. If this is true one can ask why the spectra of outer modes and PTMs

show rich harmonics in the Fourier spectra? Fourier spectral analysis uses linear superpositions

of unlocalised trigonometric functions. Therefore FFT can only be applied to linear and station-

ary time series. If nonlinear effects deform the wave profiles towards localisation, FFT needs

additional harmonic components to describe these profiles. Non-stationarity and nonlinearity

can induce spurious harmonic components that cause energy spreading. An example for such

a behaviour would be a Fourier decomposition of a flash light, represented by a delta function

in the time domain. Localised in time functions produce less localised FFTs. Spatial localised

structures are therefore not independently traveling waves, but highly coherent wave packages.

The non-stationary time series may be represented as follows [7].

X(t) =
n

∑
j=1

a j(t)exp(i
∫

ω j(t)dt) (1)

In order to extract signals from nonlinear or non-stationary time series X(t), the adaptive time-

frequency data analysis method "Empirical Mode Decomposition" (EMD) [7] is suitable. EMD

acts as a dyadic filter bank to decompose the series into a finite set of so-called Intrinsic Mode

Functions (IMF). Each IMF reflects the data on a different time-scale and admits well-behaved

Hilbert transforms. EMD ables examinations of noisy linear and nonlinear processes. In con-

trast to Fourier spectral analysis the amplitudes a j(t) and frequencies ω j(t) obtained by EMD

are functions of time (Eq. 1). Amplitude and frequency modulations described by the IMFs are

now clearly separated.
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Results and Discussion

Phenomena like PTMs exhibit a current, density and a temperature perturbation. Therefore

EMD was applied to MHD and ECE data of JET. Electron temperature fluctuations of the PTM

measured by ECE show different behaviour in different channels of the diagnostic (Fig. 2 a).

The investigated channels B2:001, B1:012 and B1:011 cover parts of the pedestal region of JET

for pulse #52011, t = 19.164−19.166 s. Channel B1:011 (green) shows large positive temper-

ature spikes as the PTM filament enters the detection volume. In contrast, channel B2:001 (or-

ange) shows negative spikes compared to the background temperature. Channel B1:012 (blue)

suggests a symmetric modulation of the electron temperature without temperature spikes as in

channel B1:011 or B2:001. This observation was quantified in PDFs.

a) b)

Figure 2: a) Electron temperature fluctuations measured by three different ECE channels at

different radial positions. The vertical red line gives insight into the phase relation between the

three signals (JET Pulse: #52011, t = 19.164−19.166 s). b) EMD of channel B1:011. The red

signal shows spiky temperature peaks slightly advanced with respect to the maxima of the black

line. The black line gives the fraction of the current perturbation. A superposition of these two

signals yields the detrended green measured signal from a).

Fig. 2 shows the result of EMD. The red signal is the superposition of the first five IMFs,

where the black line shows the detrended raw data (green, Fig. 2) minus the red signals. Al-

though ECE data sets are pretty noisy, signs of temperatures spikes can be observed in the red

signal. It is assumed that these spikes represent the temperature inside the filament. The black

line is interpreted as distortion of the local equilibrium due to the current perturbation of the
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PTM and is in phase with the positive temperature spikes. With the Hilbert transform it is pos-

sible to compute Hilbert Amplitude spectra (HAS) from the IMFs [7]. This is demonstrated in

Fig. 3. EMD was applied on magnetics data when a PTM was present (coil T002, JET pulse:

#52011).
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Figure 3: Hilbert amplitude spectrum of

coil T002 (JET pulse #52011)

The obtained spectrum shows only one dominant

mode and some signs of intra-wave modulations.

A similar behaviour is observed in HAS of ECE

data although the noisy data sets aggravate the in-

terpretation. Usually, in Fourier spectra of PTMs

up to seven harmonics are observed. These are also

visible in wavelet analysis if the popular Morlet

wavelet is used since it is Fourier based. A draw-

back of HAS is that the frequency of the PTM can-

not be as easily determined as in FFTs or wavelet

scalograms. It is therefore useful to combine sev-

eral methods to make use of all advantages.

Conclusion

EMD and HAS from single signals thereby consistently supports the assumption that the

PTM is indeed a current filament. The magnitude of the current-induced temperature fluctua-

tions can also be deduced and allows an estimate of the influence on the equilibrium.
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