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1. Introduction 

Tearing modes presently dominate fluctuations in the reversed-field pinch (RFP). Using 

current profile control techniques, tearing modes can be removed, and resistive pressure 

driven modes become more significant. The plasma confinement properties in the RFP are 

considerably limited by the resistive “g-modes”. In the tokamak, however, these resistive g-

modes can be eliminated due to stabilizing curvature effects. In the RFP, classical theory 

predicts that resistive g-modes are linearly unstable for all equilibria. These instabilities may 

cause modest global energy confinement parameters, preventing the RFP from operating at 

high poloidal beta values, being crucial for a commercial fusion reactor. In earlier work, 

Bruno et.al [1] have proposed the stabilization of resistive g-modes in the RFP by including 

finite perpendicular thermal diffusion effects. In this work, we present a computational 

analysis of stability of resistive pressure driven modes with and without heat conductivity 

effects.  

2. Calculation of growth rate by ∆´analysis 

First approach is to solve the linear stability by means of asymptotic matching, known in 

literature as ∆´analysis [2]. The plasma has very small resistivity, the contribution of which is 

considered in a very thin layer, so-called resistive layer. Both types of energy equations, 

without and with heat conduction terms, are studied. In particular, we determine to what 

extent the orderings used in the ∆ ́ theory limit its validity. 

2.1 ∆´ Stability analysis with adiabatic energy equation 

As stated earlier, resistive MHD modes have early been investigated by using the traditional 

dispersion relation [1] 
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where rs is the radial location of resonance, ∆´ is defined as the jump across the resonance of 

the logarithmic derivative of the radial component of perturbed magnetic field, D is Suydam’s 

normalized pressure gradient and Q is the normalized growth rate. In order to calculate the 

growth rates, a numerical shooting procedure has been employed. The code is designed in 
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such a way that, at low poloidal beta values, it permits benchmarking with zero-pressure 

∆´theory [2].  

2.2. ∆´ Stability analysis including thermal conductivity 

In a recent ∆ ́ analysis, using a new tearing mode ordering for the resistive layer dynamics, it 

is claimed, however, that the traditional adiabatic assumption for the energy equation is not 

justified [1]. Instead, inclusion of thermal conductivity allegedly flattens the pressure profile 

near the resistive layer and stabilizes resistive MHD modes at moderate plasma beta. An 

extended energy equation has been used with the assumption of constant density. The 

dispersion relation obtained from this model is [1] 
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Here, !! is the new scale resonant layer length, m is the poloidal mode number, !! and !∥ are 

the perpendicular and parallel thermal diffusivities respectively. 

3. Time spectral weighted residual method 

The second procedure is to solve the full set of resistive MHD equations in the entire spatial 

region. The results obtained from the ∆ ́ analysis are thus compared with an initial-value code 

that uses a fully resistive, linearised model for the entire plasma domain. The code is based on 

the novel generalized weighted residual method (GWRM), which is a fully spectral method 

for initial value problems in the form of partial differential equations [4]. The trial basis 

functions used for all temporal, spatial and physical domains are Chebyshev polynomials 

owing to their minimax property, which provides fast convergence [3]. A brief overview of 

GWRM follows. Consider the following first order parabolic or hyperbolic partial differential 

equation.                                                                                                    (4) 

where u = u(t,x;p) is the solution vector, D is the linear or nonlinear matrix operator and f = 

f(t,x;p) is a source term. Integrating equation (4) gives  

                                                            (5) 

where u(t0,x;p) is chosen to satisfy the boundary as well as initial condition. Now, the starting 

point is approximating the solution vector with 1st kind, finite, multivariate Chebyshev 

polynomial series as both trial and weight functions. Confining here to a single dimensional 

domain, the solution ansatz can be written as the sum 

u Du f
t
∂

= +
∂

u(t, x; p) = u(t0, x; p)+ {Du( !t , x; p)+ f ( !t , x; p)}d !t
t0

t

"

38th EPS Conference on Plasma Physics (2011) P4.078



	
  
	
  

3	
  

                                                                                  (6) 

with 	
  being (shifted) time, space, and parameter free variables. 

Prime denotes division of constant coefficient term by 2. As in traditional weighted residual 

methods (WRM), the unknown coefficients ’aklm ’are determined by requiring that the integral 

of the weighted residual, obtained from (5) and (6), over the computational domain is zero. 

Performing the integration by parts, the details of which can be found in [4], this results  

                                                                                                  (7) 

This GWRM coefficient equation is a complete implicit relation together with the boundary 

conditions. ’Aqrs ’are functions of coefficients ’aqrs’, result from the operator D, the 

coefficients ‘brs’ reflect the initial conditions while ’Fqrs’ are uniquely determined from the 

source term ’f ’. Equation (7) can be linear or nonlinear depending upon the type of the 

problem. If linear, coefficients can be found using traditional methods like Gauss elimination 

method. In case of nonlinear equation (7), a semi implicit root solver SIR [4] has been 

designed which has shown excellent compatibility for GWRM. 

4. Results  

For numerical comparison, the following RFP equilibrium profiles (given in [2]) are used 

with βθ =0.046 for both ∆´ and GWRM. Here m=1, kz =2 (axial mode number) and all 

quantities are normalized [1].   
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  Fig.	
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  Suydam’s	
  criterion	
  profile.	
  
	
  
4.1 Growth rate by ∆´analysis	
  
In the figures below, we have shown growth rate dependence on resistivity for βθ =0.046. It 

can be seen that growth rate increases, when heat conduction terms are included for this 

specific equilibrium. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Fig.4	
  Growth	
  rate	
  by	
  ∆´	
  (without	
  heat	
  conductivity)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Fig.5	
  Growth	
  rate	
  by	
  ∆´	
  (with	
  heat	
  conductivity)	
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4.2 Growth rates by GWRM 

GWRM gives the complete solution and thus plays a vital role for calculations of growth rate, 

which are in good agreement with those values obtained by ∆´. 

4.2.1.Without heat conductivity 

Figures 6 and 7 show the growth rate of perturbed radial velocity and magnetic field. For 

Lundquist number S0= 10-3, growth rate =0.011. Figures (8&9) show the time evolution of the 

growth rate of radial velocity and magnetic field.  

                                                        
Fig.6 Perturbed radial velocity             Fig.7 Perturbed radial magnetic field    Fig.8 Perturbed radial vel.     Fig.9 Perturbed magnetic field        
4.2.2.With heat conductivity 

For evaluation of heat conduction terms, plasma parameters from EXTRAP T2R (Sweden) 

have been used. For this specific equilibrium, we obtained !!= 2.54 10-7, !∥= 0.68 10-5.For  

S0=10-3, growth rate = 0.048 which implies that the resistive g-modes turn out to be more 

unstable. The figures (10&11) show growth rate of radial velocity and magnetic field. Figures 

(12&13) show the time evolution of the growth rate of radial velocity and magnetic field. 

                                                                           
      Fig.10. Perturbed magnetic field         Fig.11. Perturbed radial vel.             Fig.12  3D Pert. radial vel.              Fig.13. 3D Pert. mag. field 
 
5. Conclusion 
 
The preliminary numerical study by both ∆´and GWRM does not support the claim that, 

inclusion of heat conductivity in the energy equation, somehow provides marginal stability 

and stabilizes the pressure driven modes in the RFP.  
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