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In tokamaks, macro-scale MHD instabilities coexist with micro-scale turbulent fluctuations.

Magnetic islands can, in particular, coexist with pressure driven instabilities such as interchange

modes and/or turbulence. Several experiments and numerical studies report the coexistence of

turbulence and MHD activities showing some correlated effects [1, 2, 3, 4]. We address here the

multi-scale-nonlinear dynamics between macro-scale tearing instabilities and gradient pressure

driven micro-instabilities (resistive interchange) by solving reduced MHD equations numeri-

cally.

We consider a two-dimensional slab plasma model that includes magnetic curvature effects

and consists of cold ions and isothermal electrons. The basic evolution equations are [4],
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where the dynamical field quantities are φ , the electrostatic potential, p the electron pressure, ψ

the magnetic flux and ψ0 the equilibrium magnetic flux. The equilibrium magnetic field is given

by Beq = B0zŷ+ψ ′0(x)ẑ where B0z is constant. The equilibrium quantities consist of a constant

pressure gradient and a magnetic field corresponding to a Harris current sheet model [5]. Equa-

tions (1-3) are normalized using the characteristic Alfvén speed vA, the Alfvén time τA and a

characteristic magnetic shear length scale L⊥. Further, κi={1,2} include curvature and gradient

pressure effects. µ is the viscosity, χ⊥ the perpendicular diffusivity, η is the plasma resistivity,

v? is the normalized electron diamagnetic drift velocity and ρ? is the normalized Larmor ra-

dius. This model use in fact a reduced version of the four fields model derived in reference [6],

neglecting parallel ion dynamics.

The impact of interchange turbulence on the formation of a magnetic island is investigated

by means of linear and nonlinear simulations of equations (1-3). A semi-spectral code is used

including a 2/3 dealiasing rule in the y (poloidal) direction, a resolution of 256 grid points
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Figure 1: ∆′ =−0.45. Snapshots of the electrostatic potential φ at t = 1300τA (a), at t = 2500τA (b) and

snapshots of the magnetic flux ψ at t = 2500τA (c).

in the x (radial) direction and 64 poloidal modes. The computational box size is Lx = 2π

and Ly = 5π . The perturbed fields are periodic in the y (poloidal direction) and are set to

zero at the radial boundaries. The Fourier decomposition of the fields is typically defined as

ψ(x,y, t) = ∑m∈Z ψm(x, t)exp(ikmy) with km = 2πm/Ly. The parity (odd or even symmetry in

the spatial coordinate) of the eigen-functions ψm (x, t), φm (x, t), pm (x, t) provides a distinct

marker of identification of a given mode m and helps in pinpointing the instability mechanism

generating it. The resistive interchange mode m has (odd, even, even) parities with respect

to x ∈ [−Lx/2,Lx/2], for (ψm,φm, pm) respectively, and (even, odd , odd) parities for tearing

modes.

Our goal is to study the non linear impact of turbulence on magnetic island. The parameters

are choosen in order to to let resistive interchange instability develop at small-scales and to let

marginally stable tearing mode at large-scales: we have fixed ρ̂ = 0.04, v? = 10−2, κ2 = 0.36

and the dissipative parameters (µ , χ⊥, η) are taken to be equal to 10−4. Thus, a large range

of modes m ≥ 2 are unstable with respect to the interchange instability and, therefore, present

an interchange parity. We next categorize the most interchange modes number by m? and its

growth rate by γm? such that m?� 1 (in our study, m? = 17). Moreover, the nature (parity) of

the m = 1 mode depends on the competition between the interchange and tearing instabilities.

In our study, the stiffness of the magnetic equilibrium profile is such as the mode m = 1 is

stable with respect to the tearing mode (∆′ = −0.45). It follows that m = 1 mode is unstable

with respect with interchange instability even if γ1� γm? . In other words, linearly, no magnetic

island can develop.
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Figure 2: ∆′ = −0.45. Time evolution

of the kinetic energy of the poloidal

modes: m = 0, m = 1, m = m? and

m = m?+1.

To investigate how the small scales interchange modes

affect the formation of a magnetic island, we carry out

nonlinear simulations. Fig.(1) presents the snapshots of

the electrostatic potential φ at the end of the quasi lin-

ear regime at t = 1300τA (a) and during the fully nonlin-

ear regime at t = 2500τA (b), as well as the the magnetic

flux ψ (c): In the quasilinear phase, unstable interchange

modes grow at small scales around the resonant surface

and there is no magnetic island. However, during the non-

linear phase, despiste the negative value of ∆′, large scales

structures dominate on small scales structures and a mag-

netic island grows nonlinearly .

To understand the mechanism leading to the nonlinear formation of the magnetic island, we

present on Fig.(2) the kinetic energy time evolution for the modes of the simulation which dom-

inate energetically either in the quasilinear phase or asymptotically . The dynamics presents

different regimes. First, during the linear regime t < 250τA, all the modes present the inter-

change parity and there is no island as expected. During the qualinear regime, t ∈ [250,750]τA,
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Figure 3: ∆′ = −0.45. Eigen functions of the magnetic flux for

the mode m = 1, ψ1 (x), during the linear regime at t = 150τA (a)

and during the non linear regime at t = 1200τA (b). Eigen function

pm? (x), during the quasi linear regime at t = 700τA (c) and during

the non linear regime at t = 2500τA (d).

a beating of the interchange

modes at small scales impacts

on the growth of the large scale

modes. More precisely, as shown

by the Fig.(2), the most unstable

mode m? at small scales drives

the generation of the large scale

mode m = 0 and m = 1: Owing

to bracket structures, γNL
0 = 2γm?

and γNL
1 = γm? + γm?+1 ∼ 2γm?�

γL
1 .

Fig.(3) presents the eigen func-

tions of the magnetic flux for the

mode m = 1, ψ1 (x), during the

linear regime (a) and during the

nonlinear regime (b). It shows

that the beating of the interchange modes also leads to a change in the parity of the driven
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m = 1 mode. As a consequence a magnetic island is nonlinearly generated by the pumping of

the energy of small scale unstable interchange modes even when ∆′ < 0. Indeed, an important

property of all the nonlinearities in eqns. (1-3) is that, if initially, the system is driven by small

scale interchange modes intss, their mutual interactions can only drive tearing parity large scale

fluctuations tearls: {intss, intss}→ tearls.

Then, from t/τA > 750, island growth is slowed down and saturates asymptotically . Ener-

getic saturation of small scales (m∼ m∗) is already reached while the large scale modes m = 0

and m = 1 are still feeded by it and dominate (Fig. 2). As shown on the Fig.(3) which presents

the m = m? pressure eigen functions pm? (x) during the quasilinear and the nonlinear regime, the

interchange mode m? starts to lose its parity and tends to get a tearing parity. A cascade directly

from the large tearing scale to the small scales becomes dominant. Indeed, the nonlinear proper-

ties of eqns. (1-3) show that the mutual nonlinear interaction of large scale tearing modes tearls

can drive only tearing parity small scale fluctuations tearss : {tearls, tearls}→ tearss. This mech-

anism changes the nature of the turbulence and together with the ohmic disssipation balances

the pumping of the small-scales energy by the magnetic island. Let us underline the complexity

of the dynamics by precising that asymptotic cascade properties are intermittent in time.

In conclusion, we have studied the effect of small-scale interchange turbulence on a marginally

stable tearing mode. The presence of the interchange turbulence has a major influence on the

excitation and evolution mechanisms of a magnetic island. As soon as the growth of the inter-

change modes is fast enough (i.e. 2γ? > γ1), a magnetic island can be generated at large scales

thanks to a nonlinear beating of interchange modes at small scales. The presence of the island

at large scales nonlinearly affects back the nature of the small scales turbulence, noteworthy

caracterized by a modification of the small scale mode parities.
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