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Forced magnetic reconnection[1] driven by externally imposed resonant magnetic perturba-
tions is of great interest to magnetic confinement fusion using toroidal plasma, because it might
be applicable to a control method of magnetohydrodynamic (MHD) instability. Changing exter-
nal perturbations or plasma equilibrium parameters slowly, sudden appearances and disappear-
ances of imposed magnetic islands have been observed in stellarator plasmas[2]. Historically,
magnetic islands and stochastic layers in stellarator plasmas have been investigated in the con-
text of resistive MHD instability driven by averaged bad curvature[3], however mechanism of
the sudden transitions is not clarified yet. In tokamak plasmas, similar transitions of externally
imposed magnetic islands have been observed, and theoretical work revealed that plasma rota-
tions can screen penetration of external perturbations[4]. In stellarator plasmas, poloidal rota-
tions are generated by neoclassical particle diffusion associated with strongly rippled toroidal
magnetic field. Therefore, poloidal rotations might play essential roles for stability of magnetic
islands in stellarator plasmas.

In this study, the transition mechanism of magnetic islands in stellarator plasmas is inves-
tigated using a theoretical model of forced magnetic reconnection with neoclassical poloidal
flows. The model is an extended version of that in our previous report[5]. In this paper, effects
of averaged curvature and resistive flows are newly taken into account.

A stellarator plasma with toroidal magnetic field By, major radius Ry and averaged minor
radius a in cylindrical coordinates (r,0,z) is considered, where r is position in the minor radial
direction, 0 is poloidal angle and z is toroidal position, respectively. We assume that perturbation
of poloidal magnetic flux is given by \,, »(r) exp (m0 —nz/Ro — [ ®dt), where {m,n,0} are
poloidal and toroidal mode numbers and rotation frequency, respectively. Modified Rutherford

equations are given by
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where I} = 0.82, kg = m/r, and 1R is resistive diffusion time. Rational surface is located at

r = rs. vg is poloidal flow velocity. Magnetic island width is given by w = 4./Lsys /By, where
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W5 = Y n(rs) and L, is magnetic shear length. In Eq.(2), the rotation frequency is expressed
as 00/9t. A = [0,Pp
perturbed ideal MHD equilibrium with a boundary condition i, ,(a) = ., where y,, indicates

re+0 — O Wmn|r.—0]/Ws characterizes an outer layer solution given by

amplitude of externally imposed magnetic perturbations. In toroidal current-less equilibrium of

helical plasmas, A’ is given by
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where Wyae = 44/(rs/a)™(LsWa/Bo) and A) = —2kg /[1 — (rs/a)™). Phase angle of magnetic
islands matches that of externally imposed magnetic perturbations at ® = 0. In the derivation of
Egs.(1) and (2), a so-called constant-y approximation characterized by [wA’| < 1 is used. Aggy
in Eq.(1) indicates an effect of perturbed current driven by magnetic field line curvature[3].

Considering electron pressure perturbation near magnetic islands, we obtain

LD
Agay = 2R ; )

with wee = (XL/XH)IM(Ls/ke (ra)'/2, b =63 and I = 5.4. X and X are thermal trans-
port coefficients parallel and perpendicular to magnetic field lines, respectively. Dr is given by
DR = ¥PBeL2/Lye, where {K,Be, Ly} are averaged magnetic field line curvature in the toroidal
direction, electron beta and electron pressure gradient scale length, respectively. Contribution
of ion pressure perturbation is less important. An original nonlinear model of forced magnetic
reconnection[1] is recovered by setting ® = 0 and Aggy = 0. When the second term on the
right-hand side (RHS) of Eq.(2) is negligible, a so-called non-slip condition defined in Ref.[4]
is satisfied. We give a time evolution equation of poloidal flows as
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The first term on the RHS of Eq.(6) comes from Lorentz force among magnetic islands and
external magnetic perturbations, where ¢ separates the inside and outside of magnetic islands
aso =1lin|r—rg <w/2and 6 =0in |r—rs| > w/2. The second term on the RHS of Eq.(6)
mimics viscous drag force by micro turbulence. The third term on the RHS of Eq.(6) represents
neoclassical drag force among trapped particles and passing particles. fgIC is given by
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Figure 1: Vacuum island width dependence of (a) magnetic island width and (b) phase angle in

stationary state.

where {D}%°,V*° p,} are neoclassical diffusivity, neoclassical flow velocity and Larmor radius
of a =1,e (ion, electron). When trapped particle orbit in toroidally rippled magnetic field is not
strongly affected by magnetic islands, D}°° might be well approximated by kinetic closure using
an average over original, nested magnetic surface[6]. The modeling, (6) and (7), is basically the
same as that in our previous report[5].

Equations (1)-(7) are solved in typical parameters of the LHD applying (m,n) = (1,1) ex-
ternal magnetic perturbations[2], where the classical tearing mode is linearly stable, aAj = —7.
Our parameters are in so-called visco-resistive regime[4]. Because we focus on forced magnetic
reconnection, we assume A6 + Aggy < 0.

In Fig.1, we change wy,c slowly, and find stationary states of magnetic island width and phase
angle. Two cases are plotted: Dr = 0 (open and closed triangles) and Dr = 0 (open and closed
circles). Two bifurcation branches are observed, i.e., fully reconnected, large state w ~ wy,c and
suppressed, small state w << wyyc. In the latter state, growth of magnetic islands is suppressed
by screening effect of poloidal rotations. Note that magnetic islands do not rotate in both states.
The bad curvature effect is found to enhance magnetic island width in the fully reconnected
state, and changes range of the multiple state. Strictly speaking, the constant-y assumption is
weakly violated in the suppressed state, i.e., ]wA’ | ~ 1. For this reason, comparison of our results
with fluid simulations is desirable.

Figure 2 shows radial profile of poloidal flow velocity, where the negative sign indicates

the ion diamagnetic direction. The dashed line is an unperturbed poloidal flow. Two solid lines
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Figure 2: Radial profile of poloidal flows near magnetic islands.

indicate poloidal flows in the fully reconnected and suppressed states at wy,. /a = 0.06. (m,n) =
(1,1) rational surface is located at rg/a = 0.84. Poloidal plasma flow is damped near magnetic
islands in the fully reconnected state. Whereas, the plasma flow is not strongly damped in the
suppressed state, and the plasma flow and the resistive flow cancel each other to stop magnetic
island rotation.

In summary, a nonlinear model of forced magnetic reconnection in stellarator plasmas is
developed. With neoclassical poloidal flows, externally imposed magnetic islands have two
branches of stationary state, i.e., non-rotating large islands and non-rotating small islands. It
is found that averaged bad curvature enhances width of large islands and helps to sustain this
state. Detailed comparison between our results and both experimental observations and fluid
simulations are left as future works.
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