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1 Introduction
During the construction of the Wendelstein 7-X stellarator (W7-X, [1]) in Greifswald,
Germany, the fabrication und assembly of the magnet system are metrologically sur-
veyed and the data is evaluated for an early detection of systematic and statistical
deviations from the coil design [2]. Especially the statistical deviations, which are differ-
ent for each of the winding packages, can cause magnetic-field errors destroying the
fivefold symmetry of W7-X. A possibility to model their impact on W7-X plasmas is to
study the magnetic perturbations as such and use the perturbed-equilibrium method
[3, 4] to describe the periodicity-destroying error-fields. This work demonstrates that
the perturbative approach replaces to a very good approximation standard, non-linear
equilibrium calculations on the full torus. An example shows the effect of periodicity-
breaking error-fields on a W7-X plasma with ι ≈ 1 near the magnetic axis and ι ≈ 10/9
near the plasma edge.

2 The W7-X high-ι variant
The W7-X magnet system comprises three coil subsystems, which are evenly dis-
tributed in ten half-modules: (i) fifty modular coils (five types, numbered 1, . . . ,5 in
the table), (ii) twenty planar coils (two types, labeled A and B), and (iii) ten control-
saddle coils (one type, labeled S). In the W7-X standard case with 5/6 < ιvac < 5/5, the
modular-coil currents are identical, e.g. 1.6 MA, and the planar auxiliary
coils, which provide flexibility in rotational transform, carry no current.
The current loads needed for a W7-X high-ι low-shear vacuum field
with the rotational transform 5/5 < ιvac < 10/9 are given in the table on
the right. Such a W7-X high-ι configuration with ι & 1 at the magnetic
axis is especially susceptible for error-fields Bm,−m

1n with low integer m.
For an error-field study in the perturbed-equilibrium framework, the re-
gion interior to the unperturbed 10/9 island chain was reconstructed to
a good approximation by a zero-β run of the VMEC equilibrium code
[5]. The unperturbed triangular cross-section at ϕ = 36o is shown in
the top frame of Fig. 1, with the VMEC flux surfaces (green), the re-
sult of field-line tracing in the vacuum field for the interior region (black),
and the surrounding 10/9 island chain (red). An enclosed toroidal flux of

coil current

type [MA]

1 1.92

2 1.92

3 1.696

4 1.248

5 1.248

A -0.832

B 0.32

S 0

FT = 1.9 Vs in VMEC makes the magnetic field in MHD equilibrium and vacuum solution
coincide, in particular the axis position (x in top frame of Fig. 1).
In this work, a field perturbation is studied which destroys the five-fold periodicity of
the device, but retains the stellarator symmetry. To this end, the currents in two neigh-
bouring modular coils of type 2 (compare the table) are increased by 16 kA, whereas
for two neighbouring type-4 coils (one on each side) the currents are descreased by
the same amount. On the boundary of the toroidal domain, the difference between the
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Figure 1: Triangular cross-section of a high-ι W7-X as determined by field-lining tracing.
Top: unperturbed vacuum field from coil currents as given in Sec. 2. Bottom: perturbed
field calculated by CAS3D-peq with displaced magnetic axis.

Figure 2: Top: Contours of the external B1n [T] on
the plasma boundary. The perturbation is centered
around a bean-shaped cross-section, v = 0, and is
prominent in the field-period −0.5 < v < 0.5. Left:
ι = 1 resonant harmonics of the external B1n on the
plasma boundary. The absolute values are shown
relative to B00 = 2.57 T.
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Figure 3: Normal displacement
Fourier harmonics from CAS3D
which determines the perturbed
equilibrium coming from the ex-
ternal field described in Fig. 2.
The dominant four of 60 har-
monics used in the computation
are shown: m = 1,n =−1 (black);
m = 3,n = −3 (red); m = 1,n = 0
(green); m = 2,n =−2 (blue).

Figure 4: The deviation of the
magnetic axis relative to the
unperturbed axis (S) from
the vacuum-field (black) and
from the CAS3D perturbed-
equilibrium (red) calculations.
The geometrical toroidal angle
ϕ is the curve parameter, in-
creasing by 72° in one of the
five field-periods of W7-X. The
varying shape of the plasma-
cross-section is indicated, too.

two vacuum fields is sampled to find the normal component of the corresponding mag-
netic field perturbation, B1n. Contours of the sampled B1n are shown in the top frame
of Fig. 2. The toroidal angle-like v increases by unity in one of the five field-periods,
with v = 0 in the bean-shaped, v =±0.5 in the triangular cross-section. u = 0 is on the
outside of the torus, u =±0.5 at the inside. With |B0| ≈ 2.57 T, the perturbation applied
results in max |B1n|/|B0| ≈ 0.3×10−4 on the boundary (see bottom frame of Fig. 2). The
dominant B1n harmonics occur for m = 1 and m = 3. For this scenario, the maximum hor-
izontal axis displacement is 0.048 m to the outside of the torus, the maximum vertical
displacement is 0.052 m. The length of the magnetic axis is 39.6 m.
In Fig. 3, the dimensionless, free-boundary normal displacement is given which de-
scribes the corresponding perturbed equilibrium as calculated by the CAS3D code
(compare the Appendix for a short description of the method). This displacement con-
tinuously matches the the external B1n of Fig. 2. The computation was done using 701
radial mesh points and sixty perturbation harmonics. As shown in the bottom frame of
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Fig. 1 for the triangular cross-section at v = 0.5 (36o), the geometry of the toroidal do-
main persists in general, the magnetic axis, however, is displaced. The deviation of the
perturbed axis relative to the unperturbed axis is given in Fig. 4; the result from CAS3D
(red) very well coincides with the data from the vacuum field (black). Along the axis, i.e.
a field-line closing upon itself after ≈ 40 m in this case, the maximum error in the deter-
mination of the axis deviation by the CAS3D code is 0.0012 m, which is to be compared
to a maximum axis deviation of 0.05 m in this scenario. This is especially interesting
with the advent of diagnostical methods such as the close-range photogrammetry of
the three-dimensional structures of magnetic fields in plasma devices. In the WEGA
stellarator (Greifswald, Germany) such field-line measurements have been performed
[6] visualizing field-lines on a length of ≈ 25 m with a spatial resolution of 0.005 m.

3 Summary
The perturbed-equilibrium method as implemented in the CAS3D code was success-
fully applied for studying the impact of a periodicity-destroying, external perturbation
field on a W7-X configuration. In the high-ι variant studied, the axis dislocation caused
by the chosen perturbation field and ι ≈ 1 near the magnetic axis was modeled to a
very good approximation by CAS3D-peq. This result encourages comparisons with the
recently introduced, three-dimensional, photogrammetric measurements of magnetic
field-lines in plasma devices.

Appendix
A detailed description of the concept of perturbed equilibria is found in Refs. [3, 4]. A
set of magnetic surfaces and two profiles, the rotational transform ι and the pressure p,
define an unperturbed plasma state for which a small perturbation is considered. The
perturbed equilibrium can be obtained from the unperturbed quantities (subscript 0),
via the stationarity of δ 1W +δ 2W =

∫
(∇p0−~0×~B0)·~ξ d3r− 1

2
∫~ξ ·F[~ξ ]d3r, which results

in F [~ξ ] =~g. The ideal MHD force operator is F , the displacement is ~ξ , the magnetic
field ~B, and the current density ~. The right-hand-side ~g derives from the perturbed
plasma force ~ξ · (∇p0−~0× ~B0). Force balance,

[
p+ |~B|2/2

]
inside

=
[

p+ |~B|2/2
]

outside
,

which must hold at any interface, and the continuity of the perturbed-magnetic-field
normal component, B1n, are the boundary conditions for the perturbed-equilibrium cal-
culation.
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