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Modelling of ICRF-heating can be carried out with Monte Carlo codes with operators
describing the wave-particle interactions and Coulomb collisions. The collision operator
describes the transfer of power to the background species and relaxation towards a local
isotropic distribution function. The ion-ion collisions are important for isotropization of the
perturbed distribution functions, because they produce a radial electric field in the
neoclassical particle transport. In uniform plasma the Coulomb collisions should relax the
distribution function towards a Maxwellian with constant density and temperature.

Here a model collision operator, applicable to the banana regime in toroidal plasmas is
presented, which has been verified in 2D (in pitch angle and radius). The neoclassical
transport is caused by collisional scattering between trapped and passing particles. Since the
averaged flux surface location of a trapped particle in axisymmetric plasma is approximately

given by the location of its turning points, y; ~ P,/ Ze, the transport of trapped particles can

be calculated from the changes of their canonical angular momentum.

In order to speed up the Monte Carlo simulations, large time steps are preferred.
Systematic errors may then occur due to the finite time steps, due to which errors may be
increased near boundaries in phase space where the Monte Carlo operators become singular.
Furthermore, the Coulomb collision operator should be compatible with neoclassical transport
in particular not producing any particle transport caused by the ion-ion collisions.

Model
A generic model, including neoclassical effects in the banana regime is tested, to assess

numerical limitations. The orbits are thin, described by (r, &), where r is the minor radius
and £ is the pitch angel at the outer midplane. The energy W is constant, only the change in

pitch angel is taken into account. Only the trapped particles undergo radial transport as they
change their parallel velocity due to pitch angel scattering. For trapped and passing particles
the scattering is assumed to take place where the orbits intersect the midplane on the low field
side. In neoclassical theory the distribution function deviates slightly from a local Maxwellian
such that ion-ion collisions do not give rise to a particle flux.

The change in pitch angel by Coulomb collision in homogeneous plasma is given by
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The corresponding Euler Monte Carlo scheme becomes,
Ea=&—EyAtEL J(1-8 )y At (2)

where 217y is Chandrasekhar’s Coulomb diffusion coefficient for pitch angle scattering. If

|£,2|>1 the particles are reflected at |£,,[=1. At the boundary w =y, the particles are

reflected to obtain steady state solutions; loss of particles will result in a gradual reduction of
the total number of particles due to the finite time steps.

In our model only trapped particles undergo radial transport as they change their parallel
velocity by collisions. The change in the radial positions of a trapped orbit is obtained from
the change in canonical angular momentum

mR, mR
2o Av, =~ Zeo Ay, (3)

Ay, =—

where R, is the position of interaction. The radial position of a passing particle is unchanged.

For both trapped and passing particles, the scattering is assumed to take place at the outboard
side of the legs. In the banana regime the distribution function of the trapped particles is
regarded as symmetric, since the collision frequency is much less than the bounce frequency.
Before each collision a random number is used to determine the sign of &

The model operator should not give rise to a net particle transport due to ion-ion collisions.
Thus, we have to find a drift term that cancels the particle diffusion due to ion-ion collisions.

The Euler Monte Carlo scheme for the change in radius given by

Ay =-Cp [—fnmt +¢(1-& )7AtJ (4)
corresponds to the differential equation
aF _ 6 a 1 2 2 2
E—E{—anCoWJr%(i(l—fn)Co yv F)} (5)

To have a steady state solution for n(y/) we add a drift term a* such that oF /oy =0,

- E%{_Ei(q’"} (1-&)y)+2a'F +%((1—§§)CO%ZF)} =0. 6)

To relate F to a local distribution function f we use F = Jf , where J is the Jacobian, for a

torus J oc r¥? _ for which it follows that
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The corresponding Euler Monte Carlo scheme for radius becomes

LGP 1 0
Voa=1 """ 07 200, (w) oy

v, E2>2r/R,

((1 §)an( )) g L:fn)ﬂ/ &% <2r/R, (8)

v

For a circular equilibrium with constant current density we haver =./4y/u, j,R,. The
convergence is determined by the time step At and the radial diffusion by C,. Fig. 1
demonstrates the comparison of the initial density profile, the density profile after 200 time
steps with yAt =0.03 and C, =3x10° with the analytical solution. In Fig. 2 the convergence
is shown forC, =3x107°. As C,or the time steps increase larger deviation from the analytical

solution is obtained. In order to improve the convergence a higher order Monte Carlo method
Is tested i.e. the Milstein scheme [1].

The Milstein Monte Carlo scheme is given in & by

A&, =—ErAt=&r(SP-1)+ ¢ [(1-&) yAt 9)
and in w by
¢ 1 0 , C /o Col(1-&7 )y
Vo =¥t e oy (8 (1)) =& (¢ 1) ¢ % (10)

if £&2<2r/R, and y,,, =y, if &>2r/R,.
Discussion and Conclusion

The Monte Carlo operator, corresponding to pitch angle scattering by ion-ion collisions
given by Egs. (2) and (4), give rise to a radial diffusion of ions producing an asymmetric
distribution function. Due to conservation of momentum a corresponding asymmetry would
have been found in the field particles, if momentum conservation had been included. In the
neoclassical theory it is the drift term arising from collisions with the asymmetric distribution
functions that cancels the radial diffusion due to ion-ion collisions. The Monte Carlo operator
given by Egs. (2) and (8) do not give rise to a radial diffusion of ions, it produces an

asymmetric distribution function. The asymmetry increases with C,. It is useful for

simulating heating by ion-cyclotron interactions by describing isotropization by pitch angle

scattering of ions without giving rise to an unphysical diffusion due to ion-ion collisions. A
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disadvantage is that, it requires knowledge of the density distribution. A dynamic scheme was
tried to cancel the ion-ion diffusion by adding a drift term calculated from the flux. However,
the spatial and time variation of the drift term in conjunction with scattering between trapped
and passing particles resulted in a large outflux of particles instead of cancelling the transport.

The diffusion coefficient becomes singular: for pitch angle scattering at £ =+1; for radial
diffusion at w =0 and at the trapped passing boundries. This makes the Monte Carlo
modelling difficult. Earlier the singular behaviour near£ =+1 had been studied [2]. The
singular behaviour near w =0 cause accumulation of counter-passing orbits and a depletion
of the co-passing orbits. The reflection at w =y, gives rise to large errors, in particular, for
the Milsten scheme, which does not converge with respect to time steps. Both C, and

At determining the radial transport and are important for convergence.
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