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Modelling of ICRF-heating can be carried out with Monte Carlo codes with operators 

describing the wave-particle interactions and Coulomb collisions. The collision operator 

describes the transfer of power to the background species and relaxation towards a local 

isotropic distribution function. The ion-ion collisions are important for isotropization of the 

perturbed distribution functions, because they produce a radial electric field in the 

neoclassical particle transport.  In uniform plasma the Coulomb collisions should relax the 

distribution function towards a Maxwellian with constant density and temperature. 

      Here a model collision operator, applicable to the banana regime in toroidal plasmas is 

presented, which has been verified in 2D (in pitch angle and radius). The neoclassical 

transport is caused by collisional scattering between trapped and passing particles. Since the 

averaged flux surface location of a trapped particle in axisymmetric plasma is approximately 

given by the location of its turning points, /T P Zeφψ ≈ , the transport of trapped particles can 

be calculated from the changes of their canonical angular momentum. 

       In order to speed up the Monte Carlo simulations, large time steps are preferred. 

Systematic errors may then occur due to the finite time steps, due to which errors may be 

increased near boundaries in phase space where the Monte Carlo operators become singular. 

Furthermore, the Coulomb collision operator should be compatible with neoclassical transport 

in particular not producing any particle transport caused by the ion-ion collisions. 

Model 

        A generic model, including neoclassical effects in the banana regime is tested, to assess 

numerical limitations. The orbits are thin, described by ( , )r ξ , where  is the minor radius 

and

r

ξ  is the pitch angel at the outer midplane. The energy W  is constant, only the change in 

pitch angel is taken into account. Only the trapped particles undergo radial transport as they 

change their parallel velocity due to pitch angel scattering. For trapped and passing particles 

the scattering is assumed to take place where the orbits intersect the midplane on the low field 

side. In neoclassical theory the distribution function deviates slightly from a local Maxwellian 

such that ion-ion collisions do not give rise to a particle flux.   

         The change in pitch angel by Coulomb collision in homogeneous plasma is given by 
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The corresponding Euler Monte Carlo scheme becomes, 

                                               ( )2
1 1n n n t tξ ξ ξ γ ζ ξ γ+ = − Δ ± − Δ                                 (2) 

where 2v2γ is Chandrasekhar’s Coulomb diffusion coefficient for pitch angle scattering. If 

1 1nξ + >  the particles are reflected at 1 1nξ + = . At the boundary 0ψ ψ=  the particles are 

reflected to obtain steady state solutions; loss of particles will result in a gradual reduction of 

the total number of particles due to the finite time steps. 

In our model only trapped particles undergo radial transport as they change their parallel 

velocity by collisions. The change in the radial positions of a trapped orbit is obtained from 

the change in canonical angular momentum 

                                        0x
||T

mRmR
Ze ZeφψΔ = − Δ ≈ − Δv v ,                                          (3) 

where xR  is the position of interaction. The radial position of a passing particle is unchanged. 

For both trapped and passing particles, the scattering is assumed to take place at the outboard 

side of the legs. In the banana regime the distribution function of the trapped particles is 

regarded as symmetric, since the collision frequency is much less than the bounce frequency. 

Before each collision a random number is used to determine the sign of ξ.  

The model operator should not give rise to a net particle transport due to ion-ion collisions. 

Thus, we have to find a drift term that cancels the particle diffusion due to ion-ion collisions. 

The Euler Monte Carlo scheme for the change in radius given by  

                                      ( )2
0 1n nC tψ ξ γ ζ ξ γ t⎡ ⎤Δ = − − Δ ± − Δ⎢ ⎥⎣ ⎦
v                                   (4) 

corresponds to the differential equation 
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F F C C F
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= − + −⎢ ⎥∂ ∂ ∂⎣ ⎦
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To have a steady state solution for ( )n ψ  we add a drift term  such that *a 0F ψ∂ ∂ = , 

( )( ) ( )(2 * 2 2 2
0

1 1 2 1
2 n n

F F C J a F C F
t J

ξ γ ξ γ
ψ ψ ψ
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= − − + + −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
v )0 0= . (6) 

 

To relate  to a local distribution function f we useF F Jf= , where  is the Jacobian, for a 

torus

J
3 2J r∝  , for which it follows that 
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The corresponding Euler Monte Carlo scheme for radius becomes 
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For a circular equilibrium with constant current density we have 0 0 04r ψ μ= j R . The 

convergence is determined by the time step Δt and the radial diffusion by C0. Fig. 1 

demonstrates the comparison of the initial density profile, the density profile after 200 time 

steps with 0.03tγΔ =  and 3
0 3 10C −= ×  with the analytical solution. In Fig. 2 the convergence 

is shown for 3
0 3 10C −= × . As or the time steps increase larger deviation from the analytical 

solution is obtained. In order to improve the convergence a higher order Monte Carlo method 

is tested i.e. the Milstein scheme [1].  

0C

The Milstein Monte Carlo scheme is given in ξ  by 

 ( ) ( )2
1 1 1n n t t2ξ ξ γ ξγ ζ ζ ξ γ+Δ = − Δ − − ± − Δ                        (9) 

and in ψ  by 
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if 2
02r Rξ <  and 1n nψ ψ+ =  if 2

02r Rξ > . 

Discussion and Conclusion 

The Monte Carlo operator, corresponding to pitch angle scattering by ion-ion collisions 

given by Eqs. (2) and (4), give rise to a radial diffusion of ions producing an asymmetric 

distribution function. Due to conservation of momentum a corresponding asymmetry would 

have been found in the field particles, if momentum conservation had been included. In the 

neoclassical theory it is the drift term arising from collisions with the asymmetric distribution 

functions that cancels the radial diffusion due to ion-ion collisions. The Monte Carlo operator 

given by Eqs. (2) and (8) do not give rise to a radial diffusion of ions, it produces an 

asymmetric distribution function. The asymmetry increases with . It is useful for 

simulating heating by ion-cyclotron interactions by describing isotropization by pitch angle 

scattering of ions without giving rise to an unphysical diffusion due to ion-ion collisions. A 

0C
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disadvantage is that, it requires knowledge of the density distribution. A dynamic scheme was 

tried to cancel the ion-ion diffusion by adding a drift term calculated from the flux. However, 

the spatial and time variation of the drift term in conjunction with scattering between trapped 

and passing particles resulted in a large outflux of particles instead of cancelling the transport.  

The diffusion coefficient becomes singular: for pitch angle scattering at 1ξ = ± ; for radial 

diffusion at  0ψ =  and at the trapped passing boundries. This makes the Monte Carlo 

modelling difficult. Earlier the singular behaviour near 1ξ = ±  had been studied [2]. The 

singular behaviour near 0ψ =  cause accumulation of counter-passing orbits and a depletion 

of the co-passing orbits. The reflection at maxψ ψ=  gives rise to large errors, in particular, for 

the Milsten scheme, which does not converge with respect to time steps. Both  and 

determining the radial transport and are important for convergence.              

0C

tΔ
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Fig. 1 Comparison of ( )n ψ   for analytical, initial 

and steady state after  sec for 

and   

 

  Fig. 2 Convergence study   for the Euler and 

Milsten schemes for  and 23 10tγ −Δ = ×
3
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