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Introduction. Electron cyclotron resonance heating (ECRH) at power level of up to 1 MW in a single

microwave beam is often used in present day tokamak and stellarator experiments and planed for

application in ITER for neoclassical tearing mode control. This power range is substantially lower

than the parametric decay instability (PDI) threshold value predicted by standard theory [1] and

therefore the EC wave propagation and damping in toroidal plasmas are believed to be well described

by linear theory and predictable in detail. However, during the last decade a “critical mass” of

observations [2-4] has been obtained evidencing presence of anomalous phenomena in ECRH

experiment. The non local electron transport effect [2], fast ion generation [3] and anomalous

backscattering phenomenon [4] accompanying ECRH are not explained in linear theory and therefore

appeal to further theory development accounting for the nonlinear effects. A possible explanation of

these observations by the backscattering PDI threshold lowering due to suppression of convective

losses of ion Bernstein (IB) decay wave was proposed recently [5]. It was shown that due to non-

monotonic density profile and toroidal inhomogeneity of magnetic field IB waves can be trapped both

in radial and poloidal direction. Due to this effect the convective PDI can be excited in typical ECRH

experiment at the pump power less than 100 kW [6].

In the present paper we demonstrate the possibility of total 3D trapping of IB waves in the tokamak

equatorial plane in the vicinity of the local density maximum produced by electron pump-out-effect

and, as result, excitation of the absolute parametric decay instability (APDI). The threshold and the

growth rate are obtained.

The basic equations. To elucidate the physics of the APDI excitation we use the most simple but

nevertheless relevant to the experiment cylindrical co-ordinate system  , ,   , where   is a radius

of the magnetic surface,  and   are the poloidal and toroidal radii, respectively. For the sake of

simplicity in a vicinity of the density maximum we consider the profile as

  2 2
0 / 1 exp( ( ) / )mn n a l         , where  relates to the amplitude of the density bump

 0 /mn a  , m  is a radial position of the density maximum, а and l  are a minor radius and a

spatial size of the local maximum, which obeys inequality l a  . We also assume the pump

frequency exceeding both the electron cyclotron and plasma frequency so that the following strong

inequality holds: 2 2 2,i pe ce   , which is typical for the second harmonic X-mode ECRH

experiments. We neglect also a weak dependence of the high frequency wave numbers on coordinate
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that allows us to introduce the pump wave in a vicinity of the density maximum at ( ,0,0)m  as

  2 2 2/ 2exp / (2 ) . .i i i iz iE a ik x ik z i t y z w c c        , where  28 /i ia P w c  , iP  is the

pump wave power, w is the beam radii, mr    , 0z R  , my   , oR  is a major radius. The

basic equations describing in a vicinity of the density maximum ( ,0,0)m the backscattered wave

generation and its convective losses from the decay region as well as the low-frequency,

i s i      , electrostatic IB wave  expE i t  
 

 are as follows:
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The nonlinear current in (1)
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   
 is given by a product of an electron

density perturbation n   produced by a low-frequency small scale decay wave and the quiver

electron velocity iu   associated with the pump wave. The nonlinear charge density   in (1),

generated by the ponderomotive force is responsible for coupling of low and high frequency waves

and takes in the LH frequency range a form
2
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. In weakly

inhomogeneous plasma the operator D̂  in the integral equation (1), exhibiting much stronger

dependence on the first argument r r   than on the second   2r r  , associated with the plasma

inhomogeneity, can be represented as    3ˆ , (2 ) , exp[ ( )]D r r r r D q r r iq r r dq        
           . The

kernel  D q  contains real part and imaginary part, ( ) ( ) ( )D q D q iD q  
   [7]:

       2 2 2 2 2 2 2 21 / / 2 / 1 / ( ) cot / / ( )pe ce pe pi ti ti ci tiD q q X q Y q                        , (2)
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where | |q q b  
 , q q b 

 , / | |b B B
 

,   11/2 2exp( )X iY t t dt  
 


    , the first and the

second terms in (3) correspond to collisional damping and the last one is the ion cyclotron damping.

We seek a solution of (1) in the vicinity of the density maximum in the tokamak mid-plane where

localization of the IBW is possible. Assuming the IBW is close to the turning point we reduce the

integral equation (1) , (2) in a vicinity of the frequency 0 , the wave vector 0( ,0,0)q  and the

coordinate 0( ,0,0) , 0 m    , 0/cia   , which are a solution of the set of equations

0 0,| | 0q oD D
    (dispersion relation of the IBW), / | 0oD q    (the IBW turning point where its
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group velocity tends to zero), / | 0oD    (the condition of the local maximum of D ). The

simplified IBW equation takes a form

    
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(4)

where the coordinates x  and y  are redefined in a way 0x    , 0 0( )y     , 0    ,

2 2
0 / |pe o   , / |oD D    , 2 2/ 2 |qq oD D q   , 2 / 2 |xq oD D q     , 2 2/ 2 |xx oD D    ,

2 2/ 2 |yy oD D y   ,  tan / |oB B   , 0 i sK q k k      ,   0, , ( , , )expb x y z x y z iq x i t       .

The PDI analyses and discussion. Assuming the IB wave damping and PDI pumping are small, we

account for them using the perturbation theory approach [6]. In the zero order approximation we

neglect D (i.e. damping) in (4) and r.h.s. (i.e. nonlinear pumping) of (4) and obtain equation which

can be solved by separation of variables. The corresponding expression for the IB eigen mode trapped

in radial and poloidal direction and possessing translation invariance in the toroidal direction is given

by       2( , , ) exp / (2 ) / cotkln xq qq o k lb x y z iD D x in R z y x y       with kH being Hermitian

polynomials, 4
0/x qq xD L q  , 0 0/ sin  /y y peL q    being a  size of the IB mode

localization region in the radial and poloidal directions and

   
1/222 2 2 2 2

0
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2 / / /xL q D x D x q D q  


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 and
1/22 2

0 0
2 /yL q D y


  . The exact

value of the mode frequency 0IB kl    is determined by following quantization condition

0 01 1

0

(2 1) sin  (2 1)pe
kl qq

x y

q q
D D k D l

L L
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  
     


. At the next step of the perturbation analysis

procedure we account for IB wave damping and PDI pumping that yields for the growth rate

 IBi    of the IBW mode the following expression (which we present here only for , 0k l  ):
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(5)

where 1
0

/ |IB oD D      is a damping rate of the IBW. Putting 0   in (5)  gives the threshold of

the APDI in the form

   
1 222 2 2 43

02 1
0 02 2 4 2 2 22 2 4
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exp ,
4

qq x qq damp pe i
i IB EC i

qq xq x i ceqq xq x

D K D V q c a
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D D V HD D
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   
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


  
     

       
(6)

where ( )o iP  is a maximal growth rate in homogeneous plasma, /EC xc  is the convective loss

rate of the high frequency daughter wave from the decay region and PDI / dampV V is a geometrical factor
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defined as a ratio of the decay volume and the IBW damping volume ( dampV ). In the case of the

dominating IBW collisional damping the factor is given by:  2 2
PDI 0/ 2 1 /damp yV V R w w    .

The generalized dependence (6) in which we take account of

parametric excitation of an arbitrary the radial and poloidal

modes k , l  can be illustrated with the example corresponding

to the 2nd harmonic X-mode ECRH under discussion for

application at JET. The dependence of the APDI growth rate

versus the pumping power is shown in Fig. 1  for the typical

conditions on JET ( 14 -31 10 cmn   , 3 keVD eT T  ,

23 kGsH  , 2.96oR m , 1.25a m , 2.1b m , / 0.1B B   ,

170 GHzif  , 3cm  , 0.1  and width 5 cml  ). As we

can see, the minimal threshold is realized for the fundamental

mode 0k  , 0l   and is about 200 kW which is more than three orders of magnitude lower than

predicted by the standard theory [1]. Meanwhile, the APDI minimal threshold is much greater than the

threshold of the fast convective PDI [6], which can be assessed for the same parameters of about 3.6

kW. This can be explained in such a way that the IBW in the case of the APDI is trapped in the radial

and the poloidal direction in small region comparable to the microwave beam width and decay region,

makes long excursion in the third, toroidal direction, intersecting the EC pumping beam (or decay

region) many times and suffering from collisional damping. The most likely saturation mechanism for

the APDI comes from stochastic (IB wave amplitude dependent) damping. It appears to be not very

high and corresponds to the level of anomalous reflection of less than 10-3. However when the

parametric pumping exceeds the maximal possible stochastic damping this quasi-linear saturation fails

leading to a stronger anomalous reflection, ion acceleration and possibly to reduction of ECRH

efficiency.
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Fig.1. The dependence of the
normalized APDI growth rate
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different modes of IBW for the JET
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