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Introduction

Self-consistent simulations of resistive drift wave turbulence have yielded the first finding of

transport bifurcations in such a system. These transport states are linked to an asymmetry in the

shape of the poloidal zonal flows - with more pronounced, deeper flows in the ion diamagnetic

drift direction.

The potential relevance of drift wave turbulence lies in the high gradient tokamak edge (and

thus at internal transport barriers) as well as in geostrophic modes, the drift wave analogon in

planetary turbulence.

Apart from a qualitative analysis of this flow asymmetry and its associated density corru-

gations, studies of newly found radial drift wave avalanches (moving downhill the shear flow

gradient contrary to naive expectations based on ∂t~vgr,x,DW ∝ ∂xvy,shear) have been conducted.

Numerical simulations

Using the Braginskii-based two-fluid code NLET [3], a turbulent sheared-slab cold-ion re-

sistive drift-wave system consisting of the following Hasegawa-Wakatani equations has been

examined:

dtn = dt∇2
⊥φ (1)

ρ̂−3
s dt∇2

⊥φ = −∂ 2
‖ (φ −n) (2)

where dt = ∂t +~z×∇⊥φ ·∇⊥, ∂‖ = ∂z− 2πsx∂y and ∇2
⊥ = ∂ 2/∂x2 + ∂ 2/∂y2 as well as

Ls = 1/2πs and Lz(= 2πqR) as the parallel length scale.

Here, ρ̂s = ρs/L⊥ - the single relevant parameter for the Hasegawa-Wakatani equations - is

the dimensionless ratio of the ’ion sound Larmor radius’ ρs = mvth/eB = m
√

Te/eBmi to the

orthogonal length scale L⊥ = R/Ln (πq/s)2/3 [
cst0neη‖/2B

]1/3 (the scale of maximal drift wave

growth where the relaxation frequency equals the diamagnetic drift frequency) where η‖ marks

the parallel resistivity and Ln =−n(dx/dn).

Time is normalized to t0 = ρs/vdia,e− with vdia,e− = α(1+ηi)(1+ τ)t0L∇/2L0Ln.

Typical run parameters in the previously defined units are nx = ny = 512, nz = 32, Lx = Ly =

104.5ρs, Lz = 6.3qR, grid step size ≈ 7.7 ·10−3, time step ≈ 3.4 ·10−4 and run time ≈ 8.8 ·101.
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Extensive consistency and convergence scans have been performed prior to the parameter scans

for ρ̂−3
s .

Parameter studies

Figure 1: Density fluxes

in terms of L⊥ and ρs

As is well-known, the linear properties of the flow states are

best characterised by the eigenvalue of the unsheared system, since

the sheared eigensystem cannot easily reproduce the development

of the states. There is no feasible decomposition for this non-

orthogonal, nearly collinear eigensystem, thus developing single

eigenvectors on their own is rendered impossible. Strictly speak-

ing, there are no growing eigenmodes for s 6= 0, hence the general

growth rate of modes of the shearless, non-adiabatic case, derived

from eqns. (1) & (2), is used

γ = ℑ(ω) ∝

[
k2
⊥+ k2

‖

(
1

k⊥ky
+

k⊥
ky

)2
]−1

(3)

which is approximated by γ = ω ∗2 /ω‖ = k2
⊥/

(
k2
‖/(ρ̂−3

s k2
⊥)

)
= ρ̂−3

s k4
⊥/k2

‖.

The mixing length anomalous heat diffusion coefficient D = γ/~k2
⊥ depends on the orthogonal

wavenumber, which is determined by one of two scales with a transition at approximately ρ̂s ≈
0.12−0.20 (coinciding with the onset of zonal flow formation). For the two regimes we find:

• relaxation scale L⊥ dominant for ρ̂s < 0.12: D̂ = γ̂/k̂2
⊥|kphys=L−1

⊥
= γ̂/k̂2

⊥|kunits=ρ̂s∝ ρ̂−1
s

• diam. drift scale ρs dominant for ρ̂s > 0.2: Dρ = γρ/k2
ρ⊥|kphys=ρ−1

s
= γρ/k2

ρ⊥|kunits=1∝ ρ̂−3
s

⇒ Dρ

D̂
= ρ̂−2

s (analytically) ⇐⇒ Dρ

D̂
= ρ̂−2±0.1

s (numerically)

It has been verified thoroughly by a set of numerical parameter scans over ρ̂s that D/Dρ is

asymptotically constant for small ρ̂s and, vice versa, D/D̂ for large ρ̂s.

Transport bifurcations

To our knowledge, for the first time in self-consistent simulations, transport bifurcations con-

taining two stable gradients have been found.

These density corrugations represent stationary transport states with regions of high diffu-

sivity and low gradients at the location of the flows pointing in the electron diamagnetic drift

direction (the positive flows) while low diffusivity and high gradients can be observed at the
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Figure 2: Flow and density profiles

more sharply concentrated, radially tightened

negative flows - the bifurcations are accompa-

nied by an asymmetric flow pattern.

This flow structure emerges on time scales

which are∼O(101) for a typical parameter ρ̂s ≈
0.28 (and gain approximately one order of mag-

nitude for every doubling of ρ̂s) - this, in addition

to a higher resolution, might indicate why they

have not been observed in earlier studies [1].

Bifurcation mechanism

Using the drift wave action invariant N [2] for

the wave packet intensity

∂tN~k =−∇~x

(
N~k ·~vgr,~k

)
−∇~k

(
N~k(x) ·~̇k(~x,~k)

)
(4)

(where the second term stems from a shear flow which can change the wave number locally [5],

with~̇k =−~∇x~v ·~k0), negative flows are found to repulse the turbulence, while positive flows are

attractive - the flows can change the radial wavenumbers of the radially propgating drift waves,

acting like forcefields on them. Transport, in concurrence with turbulence levels, is thus reduced

at the negative flows.

Since the transport balance ∂xΓ(x) = 0 is maintained in equilibrium, higher gradients at the

location of the negative flows are required to counterbalance this reduction. This causes density

corrugations to form, the steepened gradients of which lead to an increased rate of drift wave

generation at the flow minima. These drift waves are then repelled by the negative flows, causing

radial movement and thereby Reynolds stresses (via Poynting’s theorem) which, in turn, fuel

the flow up to its equilibrium level. The associated carry-off of drift waves leads to a deepening

of the negative flows and a broadening of the positive flows, resulting in flow asymmetry.

Radial avalanches

In the case of a constant shear flow, drift wave eddies form radial avalanches, indicating

apparent outward density transport for negative flow shear - and inward transport for positive

flow shear. The opposite would be expected, based on

vgr,x,cold =
∂ω
∂kx

=
−2kxkyρ̂2

s[
1+ ρ̂2

s (k2
x + k2

y)
]2 where kx = kx0 −

∂vy

∂x
t|ky| (5)

yielding ∂vgr,x
∂ t = 2v′yk2

y ρ̂2
s (negative for negative flow shear) and thus uphill movement.
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Figure 3: Drift wave avalanches

In order to be the dominant species despite vgr,x,

outward-moving eddies must thus experience some

form of amplification, conceivably via the drift wave

growth rate or simple acceleration. However, the drift

wave growth rate (only noticeable for |kx| ≈ 0) proves

to be too small, with kx = kx0 −
∂vy
∂x t|ky| leading to

−kx � 0 very soon. Also, acceleration up the hill can

only take place for a short time due to finite max(vgr,x)

for high |kx|.
However, if the vorticity term - the Laplacian - in

the Hasegawa-Wakatani equations becomes significant

(meaning kρs ≈ 1), the (adiabatic) drift waves with

short wavelengths experience enough scattering from high −kx to high kx in order not to perish.

They are found to thereby extract energy from the flow shear via downhill avalanches, keep-

ing v′y in check. This effect only becomes significant once the shear flows get close to their

self-consistent equilibrium, as evidenced by examinations of the antipodal case with artificially

reduced zonal flows, which result in uphill avalanches (with the Reynolds stresses being in

phase with the flow shear), thus reinforcing the flow shear.

Summary

Our sheared slab drift wave turbulence runs yield the first example of transport bifurcations

in self-consistent simulations.

These transport states and the associated flow asymmetry pose a robust phenomenon in a

considerable parameter range and have been affirmed by means of an ansatz for an asymmetry

mechanism.

In addition, and contrary to naive expectation, downhill drift wave avalanches have been

found, keeping the flow shear in check.
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