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1. Introduction 

Turbulence in toroidal plasmas forms meso-scale structures, such as a zonal flow and 

streamer, and it is important to clarify the role of the turbulence structures on anomalous 

transport [1]. High resolution measurements of fluctuations have been carried out in 

experimental devices to make quantitative estimation of turbulent transport [2]. Numerical 

simulations can give three-dimensional (3-D) turbulent fields, which represent fundamental 

phenomena in plasmas, so the simulation data are suitable as a test field to carry out detailed 

analyses for comparison with experimental results [3]. We have been developing a turbulence 

diagnostic simulator (TDS), which is the combination of fluid turbulence codes and numerical 

diagnostic modules to simulate experimental measurements of plasma turbulence [4]. In this 

paper, numerical diagnostics in a helical plasma are carried out using the TDS. 

 

2. Turbulence Diagnostic Simulator 

For turbulence analyses, we have been developing an assembly of codes, which consists of 

two main parts; turbulence codes and modules simulating experimental diagnostics. Turbulent 

fields are produced by fluid simulations using a supercomputer. Calculations in several kinds 

of magnetic configurations are carried out, and time series data of 3-D fluctuation fields are 

obtained. A large number of temporal points, which are sufficient for statistical analyses, are 

stored, so the data size is the order of tera-bytes in the case of toroidal plasmas. The stored 

data are analyzed using modules to simulate experimental diagnostics of turbulence, such as 

Beam Emission Spectroscopy (BES) and Heavy Ion Beam Probe (HIBP). The TDS includes 

the several turbulence codes and the several numerical measurement modules. The 

combination is selected in accordance with the research object. 

 

3. Turbulence Simulation 

Data analyses for a helical plasma are described in this paper. To provide turbulence data, 

the simulation code has been extended to calculate the drift-interchange turbulence in helical 

plasmas with a circular cross-section. The averaging method with the stellarator expansion [5] 

is applied to give a set of model equations for stream function u,  component of the vector 

potential A and total pressure P, as described in [6]. 
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The nonlinear simulation is performed, using the following parameters: magnetic field B = 

2.0 [T], electron temperature Te = 1 [keV], minor radius a = 0.6 [m], major radius R0 = 3.75 

[m], viscosities  = 1  10-4, pole number l = 2, pitch number M = 10. Rotational 

transform  is given by a monotonically increasing function with the radius from  (0) = 0.31 

to  (a) = 0.88, so rational surfaces with m / n = 2 / 1 and 3 / 2 are included, but 1 / 1 is not in 

the plasma, where m and n are the poloidal and toroidal mode number, respectively. 1024 

grids in the radial direction and Fourier modes -32  m  32, -8  n  8 are taken. 

Spatio-temporal data of turbulent fields are generated by this global simulation. The 

calculation with a fixed pressure source, which forms a pressure profile peaked at r = 0, is 

carried out. Figure 1 (a) shows the time evolutions of the fluctuating energy of the 

electrostatic potential. Low m, n modes whose rational surfaces exist in the plasma are excited 

in the linear growing phase, and saturation is obtained with energy exchange between various 

modes by nonlinear couplings. The snapshots of the contours of the fluctuations are shown in 

Fig. 1 (b) and (c). In the saturated state, mode structures of low m, n modes, such as (m, n) = 

(1, 1) and (2, 1), spread broadly in the radial direction, and those of medium m, n modes, such 

as (3, 2) and (8, 4), are localized near their rational surfaces. Here, we assume that variables u 

and P represent the normalized electrostatic potential and density, respectively. 

 
Fig. 1 (a) Time evolutions of the electrostatic potential energy of Fourier modes, and 
snapshots of (b) the electrostatic potential and (c) pressure fluctuations on the poloidal 
cross-section at t = 3000. 

 

4. Numerical Diagnostic 

Numerical diagnostics are carried out on simulation data as obtained in the previous 

section. Several modules are available for simulation of experimental diagnostics in the TDS. 

The examples to show the characteristic features of fluctuations are introduced in this section. 

 

4.1. mean component generation 

In our model, the mean flow is generated by the toroidal coupling with the mean pressure 

profile. In addition, turbulence perturbs the mean with nonlinear couplings. Here, we analyze 

the relationship between the turbulence and turbulence induced components. In experiments, 

a finite number of local observations give the radial profile. 1-D signals at  = 0 and  = 0 are 

taken from 3-D fields to show the radial profile. Figure 2 (a) shows the time evolutions of the 

pressure fluctuations including all modes without the (0,0) mode in the simulation ( m 0P 
 ) and 
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the (0,0) mode only ( 00P ). There exist localized modes in r / a > 0.8 as in the evolution of 

m 0P 
 , and the (3,2) mode has the largest amplitude, whose resonant surface is placed at r / a ~ 

0.83. On the other hand, the perturbation of the (0,0) mode mainly exists in r / a = 0.4 - 0.7, 

and its temporal variation is rather slower, whose typical oscillation period is 400, compared 

with the oscillation period of the (3,2) mode ~ 60. Correlation between the turbulence ( m 0P 
 ) 

and the (0,0) mode ( 00P ) is calculated to estimate their relation. The 2-D profile of the 

correlation with the (0,0) mode at r / a = 0.5 is shown in Fig. 2 (b). The turbulence in r / a = 

0.4 - 0.6 and  = -/ 6 - / 4 (low field side) is strongly correlated with the (0,0) mode, 

though the perturbations in the region where the localized modes exist have no correlation. In 

this way, it is found that there is a region where the turbulence and the (0,0) mode are coupled 

with each other. In addition, the (0,0) mode is broad in the radial direction, and a two-time, 

two-point correlation analysis shows that the change in the region where the (0,0) mode exists 

propagates faster than those in the other regions. This is one of the candidates to cause the 

non-local transport observed in the magnetized plasmas. 

 
Fig. 2 (a) Time evolutions of the radial profiles of the electrostatic potential at  = 0 and  = 
0. The sum of the fluctuations without that of the (0,0) mode m 0P 

  and the fluctuations of the 
(0,0) mode 00P  are shown. (b) 2-D profile of the correlation of m 0P 

  at  = 0 with 00P  at r/a 
= 0.5 (indicated with a dashed line). 
 

4.2. two-dimensional imaging 

Numerical diagnostics simulating turbulence diagnostics in experiments are carried out on 

the time series data [6]. Here, we show the 2-D imaging of the density fluctuation, taking 

account of the integral effect along the line of sight of the instruments. The BES observes line 

emissions from the injected neutral beam, which are related to the density. Detector arrays 

aligned two-dimensionally, as shown in Fig. 3 (a), give a 2-D image of density fluctuations. 

Numerical diagnostic gives the density integrated along the line of sight with the weight of 

the injected neutral beam intensity. Figure 3 (b) shows the snapshot of the density fluctuation 

profile. Compared with the local values at the points where the neutral beam intensity is the 

strongest on each line of sight (Fig. 3 (c)), it is found that the numerical diagnostic reproduces 

well the turbulence vortex shapes, though their outlines are blurred a little. In this case, the 

modes with low toroidal mode numbers are dominant, so the toroidal variation of fluctuations 
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is small, therefore, the numerical diagnostic represents the local values. From the obtained 

profile a trial to deduce m = 0 mode structure can be carried out by averaging interpolated 

data on a magnetic flux surface. The frequency spectrum from the deduced data along the 

dashed line in Fig. 3 (b) (r / a = 0.5) is shown in Fig. 3 (d). Compared with that of the (0,0) 

mode, there are higher frequency components. This is because the deduction is made in the 

vertically thin layer (6cm), so there remain finite m components. In this way, the simulation 

can be used to estimate how the reconstruction is matched or deviated from the actual feature. 

 
Fig. 3 (a) Schematic of the 2-D imaging of the density fluctuations. Snapshots of the 2-D 
image with (b) and without (c) the integral effect along the line of sights at t = 3000. (d) 
Frequency spectrum of m = 0 fluctuations deduced from the numerical BES signals (solid). 
The actual spectrum of the (0,0) mode is also shown (dashed). 
 

5. Summary 

The progress in the turbulence diagnostic simulator is presented by showing an example of 

data analyses with drift-interchange mode turbulence in helical plasmas. The multi-point 

spatial and temporal correlation analyses reveal the characteristic structures formed in the 

magnetized plasmas. The modules simulating experimental measurements subtract time series 

of fluctuations from the stored data, taking account of a finite spatial resolution of each 

instrument. The numerical diagnostics provide analyses as same in the experiments, which aid 

the development of the data analysis technique to deepen our physical understandings. 
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