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In tokamaks, improved confinement regimes allow to obtain temperatures in the plasma core

that are sufficient to produce self-sustained nuclear fusion reactions. A key ingredient of these

regimes is a so called transport barrier, i.e. a radially thin layer where turbulent transport of

heat and matter is significantly reduced. Moreover, the pressure gradient is strongly increased

in this layer. At the plasma boundary, the transport barriertypically is unstable and exhibits

quasi-periodic relaxation oscillations associated with high energy flux peaks that eventually can

damage the tokamak wall. These barrier relaxations are an essential characteristics of the so-

called Edge Localize Modes (ELMs) [1]. The control of these modes is a critical issue for the

next generation of experimental reactors such as ITER. Manystudies on a variety of tokamaks

such as DIII-D [2], JET [3] and TEXTOR [4] reveal a qualitative control of ELMs by imposing

external Resonant Magnetic Perturbations (RMPs) at the plasma edge. These RMPs change the

magnetic topology at the plasma edge.

The control of transport barrier relaxations by RMPs is generally due to a reduction in pres-

sure gradient by a radial energy flux [5]. When increasing theRMP amplitude, the efficiency

of ELMs control is enhanced. This property is generally attributed to the appearance of field

line stochasticity, induced by overlapping of magnetic islands [5]. However, it is not clear to

which extend the externally induced perturbation actuallypenetrates into the plasma. Indeed,

in magnetohydrodynamical (MHD) modeling, an effective screening of the resonant magnetic

perturbations by the rotating plasma has been observed [6, 7].

In previous works, barrier relaxations have been studied bythree-dimensional edge turbu-

lence simulations and the possible control of these relaxations by externally induced RMPs

has been investigated [8, 9]. These works are based on an electrostatic turbulence model and

the magnetic perturbation is imposed everywhere in the plasma. Here, we use a generalization

of this model taking into account self-consistent electromagnetic fluctuations [10], and induce

the RMP only at the plasma boundary. The goal is to study the penetration of these externally

induced RMP into the plasma and to investigate their effect on transport barrier relaxations.

The model equations for the plasma pressure p, the electrostatic potentialφ and the magnetic

flux ψ are the following :

(∂t +~uE ·∇)∇2
⊥φ =− 1

α
∇‖∇2

⊥ψ −Gp+ν∇4
⊥φ , (1)

(∂t +~uE ·∇) p = δcGφ + χ‖∇2
‖p+∇⊥ · (χ⊥(x)∇⊥p)+S(x) , (2)

∂tψ =−∇‖φ +
1
α

∇2
⊥ψ +λ (x)(ψRMP−ψ) . (3)
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Equation (1) corresponds to vorticity equation, where∇2
⊥φ is the vorticity of theE×B flow,

~uE ·∇ represents the advection by theE×B drift, ∇2
⊥ψ is the parallel current fluctuations,α

is proportional to the plasmaβ , i.e. the ratio of kinetic to magnetic pressure.G is the mag-

netic curvature operator andν the viscosity coefficient. Equation (2) corresponds to the energy

conservation, whereχ‖ and χ⊥ are the collisional heat diffusivities parallel and perpendicu-

lar to the magnetic field,δc is a curvature parameter, andS(x) is an energy source model-

ing the constant heat-flux from the plasma core. Equation (3)corresponds to the Ohm’s law.
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Figure 1:Radial profiles of the energy source

S(x) (a), the perpendicular diffusionχ⊥ (b),

the safety factor (c)and the magnetic pertur-

bation forcingλ (x)ψm0 (x) (d) as a function

of the normalized coordinatex. The shaded

region indicates the main computational do-

main betweenq = 2.5 andq = 3.5.

Simulations of this model are performed with the

EMEDGE3D code [10]. Following the standard

convention,x, y, z represent the normalised lo-

cal radial, poloidal and toroidal coordinates, re-

spectively. The parallel and perpendicular gradi-

ents (to the unperturbed magnetic field) are de-

fined by∇‖ = ∂z+
κz

q(x)κy
∂y−{ψ, ·} where{ψ, ·}=

∂xψ∂y · −∂yψ∂x· and ∇2
⊥ = ∂ 2

x + ∂ 2
y . Here, q(x)

is the safety factor andκy and κz are the mini-

mal poloidal and toroidal wave numbers. The main

computational domain corresponds to the volume

delimited by the toroidal surfaces characterized by

q = 2.5 andq = 3.5 (see Fig. 1c, shaded region).

Additional buffer zones are added on both sides.

The perpendicular heat diffusivityχ⊥ (x) is artifi-

cially increased in these regions (see Fig.1b) and

the energy sourceS(x) (see Fig.1a) is located in the

inner buffer region.

As a first step towards the simulation with the

EMEDGE3D code of the plasma response to an ex-

ternal magnetic perturbation, we define here the nu-

merical technique to impose this perturbation at the

plasma boundary, study its penetration into a vacuum, and compare the result with the analyt-

ical solution. In previous studies in an electrostatic model [8, 9], the following magnetic flux

perturbation was imposed in the plasma, motivated by the perturbation from the DED in the

TEXTOR tokamak [11],

ψsingle
RMP = ψm0(x)cos(m0κyy−n0κzz) with ψm0(x) = ψ̂ exp

(
m0ξbal
β1rc

x
)
×F(x).

Here,(m0,n0) = (12,4) is the main harmonic of the perturbation which is resonant atq =
q0 = 3, ξbal is the perpendicular normalisation length,β1 andrc are geometrical parameters of

the RMP coils. The functionF(x) is equal to 1 in the main region, and decreases to 0 in the

buffer regions such thatψm0 = 0 at the boundaries. In the present study, we impose the same
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magnetic perturbation at the plasma boundary only, by choosing the forcing coefficientλ (x) to

be non-zero only in the external buffer regionx > xq=3.5 ,

λ (x) = λ0

{
1
2

tanh
[
σ

(
x−xq=3.5−∆

)]
+

1
2

}
. (4)

−60 −30 0 30 50
0

1

2

3

4

5

6

7

Radial Coordinate x

E
q

u
il

ib
ri

u
m

 P
re

ss
u

re

Figure 2:Equilibrium pressure

profile.

The coefficientsλ0, σ and∆ are chosen conveniently and the

profile of λ (x)ψm0 (x) is shown in Fig.1d) . In the main com-

putational domain,λ (x) = 0 and the magnetic perturbation

evolves self-consistently following equations (1-3). As atest

case, we calculate here the penetration of the magnetic perturba-

tion in vacuum, i.e. for∇‖φ = 0 in Ohm’s law (3). Furthermore

we study the effect this magnetic perturbation on the equilib-

rium pressure field. The subset of equations (1-3) used for this

study is :

∂t p = χ‖∇2
‖p+∇⊥ · (χ⊥(x)∇⊥p)+S(x) , (5)

∂tψ =
1
α

∇2
⊥ψ +λ (x) (ψRMP−ψ) . (6)

Starting from noise, the pressure and magnetic flux evolve toa steady state, where the axisymet-
ric pressure profile (see Fig.2) is the determined by the sourceS(x) and theχ⊥ (x) coefficient.
The magnetic flux in the main computational domain is determined by the vacuum relation
∇2
⊥ψ = 0 . Using the boundary conditionsψ0 = ψ

(
x = xq=3.75

)
andψ (x = xmin) = 0, the mag-

netic flux can be compared to the analytical solution (see Fig.3a) :

ψ (x) = ψ0
sinh(m0κy(x−xmin))

sinh
(
m0κy

(
xq=3.75−xmin

)) . (7)
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Figure 3:a) Radial profiles ofψm0n0 in the steady state (in blue),λ (x)ψm0 (x) (crosses) and the analytical
solution (red points). b) Helical magnetic flux in the poloidal plane z=0.

Due to the parallel heat conductivity in equation (5), the magnetic perturbation induces helical

variation of the equilibrium pressure. The profile of the(m0,n0) component of the equilibrium

pressure is show in Fig.4a) . Comparing the pressure perturbation in the poloidal plane (see
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Fig.4b) with the contours of the helical flux (see Fig.3b), itbecomes evident that the equilibrium

pressure gradient is flattened on the O-points and steepenedon the X-points of the magnetic

islands [12].

−60 −30 0 30 50
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Radial coordinate x

Re(p
m0n0

)

Im(p
m0n0

)

Figure 4:Radial profile (a) and representation in a poloidal plane (b)of the helical variation of equilib-
rium pressure.

To conclude, we have calculated with the EMEDGE3D code the penetration of an external
RMP in the vacuum case and the pressure response to this magnetic perturbation. The result
is in agreement with the analytical solution for the vacuum magnetic flux. The variation of the
equilibrium pressure reproduces the well known flattening of the pressure gradient on the O-
points of magnetic islands. This work represents a first stepfor the study of the penetration of
externally induced RMPs into the plasma and the investigation of the effect on transport barrier
relaxations. The aim is to complete previous studies performed in electrostatic approximation
of the model reproducing the control of barrier relaxationsby RMPs[8, 9].
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