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In tokamaks, improved confinement regimes allow to obtampieratures in the plasma core
that are sufficient to produce self-sustained nuclear fustactions. A key ingredient of these
regimes is a so called transport barrier, i.e. a radiallg tayer where turbulent transport of
heat and matter is significantly reduced. Moreover, theguresgradient is strongly increased
in this layer. At the plasma boundary, the transport batsiprcally is unstable and exhibits
guasi-periodic relaxation oscillations associated wigihtenergy flux peaks that eventually can
damage the tokamak wall. These barrier relaxations are santal characteristics of the so-
called Edge Localize Modes (ELMSs) [1]. The control of thesedes is a critical issue for the
next generation of experimental reactors such as ITER. Mardies on a variety of tokamaks
such as DIII-D [2], JET [3] and TEXTOR [4] reveal a qualitaigontrol of ELMs by imposing
external Resonant Magnetic Perturbations (RMPs) at trer@adge. These RMPs change the
magnetic topology at the plasma edge.

The control of transport barrier relaxations by RMPs is gaihedue to a reduction in pres-
sure gradient by a radial energy flux [5]. When increasingRMP amplitude, the efficiency
of ELMs control is enhanced. This property is generallyilatiied to the appearance of field
line stochasticity, induced by overlapping of magnetiansis [5]. However, it is not clear to
which extend the externally induced perturbation actupdpetrates into the plasma. Indeed,
in magnetohydrodynamical (MHD) modeling, an effectiveegering of the resonant magnetic
perturbations by the rotating plasma has been observedl [6, 7

In previous works, barrier relaxations have been studiethbge-dimensional edge turbu-
lence simulations and the possible control of these ralaxstby externally induced RMPs
has been investigated [8, 9]. These works are based on anostatic turbulence model and
the magnetic perturbation is imposed everywhere in thenpdagiere, we use a generalization
of this model taking into account self-consistent electagmetic fluctuations [10], and induce
the RMP only at the plasma boundary. The goal is to study thetpa&tion of these externally
induced RMP into the plasma and to investigate their effadt@ansport barrier relaxations.

The model equations for the plasma pressure p, the eleatiogbtentiakp and the magnetic
flux ¢ are the following :
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Equation (1) corresponds to vorticity equation, whfjezp is the vorticity of theE x B flow,
Ue - O represents the advection by tRex B drift, Dillf is the parallel current fluctuationa,
is proportional to the plasmg, i.e. the ratio of kinetic to magnetic pressu€&.is the mag-
netic curvature operator andthe viscosity coefficient. Equation (2) corresponds to thergy
conservation, wherg and x, are the collisional heat diffusivities parallel and perpen-
lar to the magnetic fieldd. is a curvature parameter, ai®{x) is an energy source model-
ing the constant heat-flux from the plasma core. Equatioc¢&esponds to the Ohm'’s law.
Simulations of this model are performed with the
EMEDGES3D code [10]. Following the standard
convention,x, Yy, z represent the normalised lo- = S
cal radial, poloidal and toroidal coordinates, re- “ 0 a)
spectively. The parallel and perpendicular gradi-_

ents (to the unperturbed magnetic field) are de_- 4 \ / b)
fined byOy = 0;+ g5é-dy — { .-} where{y, -} =

is the safety factor andy, and k, are the mini- ' c)

mal poloidal and toroidal wave numbers. The main2 2°
o

computational domain corresponds to the volumg
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delimited by the toroidal surfaces characterized by Radial coordinate x

g= 2.5 andq = 3.5 (see Fig. 1c, shaded region).

Additional buffer zones are added on both S'dq‘—sl'gure 1:Radial profiles of the energy source

The perpendicular heat diffusivity, (x) is artifi- S(x) (a), the perpendicular diffusiog, (b),

cially increased in these regions (see Fig.1b) atrP% safety factor (c)and the magnetic pertur-

the energy sourcg(x) (see Fig.1a) is located in th%ation forcing

inner butfer region. of the normalized coordinate. The shaded

As a first step towards the simulation with the . . . :
region indicates the main computational do-

EMEDGES3D code of the plasma response to an ex. betweer — 2.5 andg — 3.5,

ternal magnetic perturbation, we define here the nu-
merical technique to impose this perturbation at the

(X) Ym, (X) (d) as a function

plasma boundary, study its penetration into a vacuum, antpace the result with the analyt-
ical solution. In previous studies in an electrostatic ni¢8g9], the following magnetic flux

perturbation was imposed in the plasma, motivated by theugetion from the DED in the

TEXTOR tokamak [11],

YRR = Yimy (9 COSMOKyY ~Nokz2) — With  ing () = Prexp( "eix) < F (4.

Here, (my,ng) = (12,4) is the main harmonic of the perturbation which is resonart -at
0o = 3, épal IS the perpendicular normalisation lengfi,andr¢ are geometrical parameters of
the RMP coils. The functioifr (x) is equal to 1 in the main region, and decreases to 0 in the
buffer regions such thapm, = O at the boundaries. In the present study, we impose the same
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magnetic perturbation at the plasma boundary only, by dhgdbke forcing coefficiend (x) to
be non-zero only in the external buffer region X435 ,

A (X) :Ao{%tanh[a (X—Xge35—0)] + %} : 4)

The coefficientsd\g, 0 andA are chosen conveniently and the
profile of A (X) Ym, (X) is shown in Fig.1d) . In the main com-
putational domainA (x) = 0 and the magnetic perturbation
evolves self-consistently following equations (1-3). Aseat
case, we calculate here the penetration of the magnetiarpart
tion in vacuum, i.e. fot] ¢ = 0 in Ohm’s law (3). Furthermore
we study the effect this magnetic perturbation on the douili 3
rium pressure field. The subset of equations (1-3) used isr th ;
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dp= X||Dﬁp+ O - (x.(¥0Lp) +S(%), (5) Figure 2:Equilibrium pressure
profile.
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Starting from noise, the pressure and magnetic flux evolaesteady state, where the axisymet-
ric pressure profile (see Fig.2) is the determined by thecgdiix) and they, (x) coefficient.
The magnetic flux in the main computational domain is deteetiiby the vacuum relation
02 ¢ = 0. Using the boundary conditionf = ¥ (X = Xg—3.75) andy (X = Xmin) = 0, the mag-
netic flux can be compared to the analytical solution (see8&jg
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e Helical magnetic flux in poloidal plane z=0
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Figure 3:a) Radial profiles ofymn,in the steady state (in blue),(x) Yim, (x) (crosses) and the analytical
solution (red points). b) Helical magnetic flux in the polliglane z=0.

Due to the parallel heat conductivity in equation (5), thgmegic perturbation induces helical
variation of the equilibrium pressure. The profile of {lm, ng) component of the equilibrium
pressure is show in Fig.4a) . Comparing the pressure pattarbin the poloidal plane (see
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Fig.4b) with the contours of the helical flux (see Fig.3bhatomes evident that the equilibrium
pressure gradient is flattened on the O-points and steemenéte X-points of the magnetic
islands [12].

Pressure perturbation in poloidal plane z-0
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Figure 4:Radial profile (a) and representation in a poloidal planeo{tthe helical variation of equilib-
rium pressure.

To conclude, we have calculated with the EMEDGE3D code timetation of an external
RMP in the vacuum case and the pressure response to this ticagerturbation. The result
is in agreement with the analytical solution for the vacuuagnetic flux. The variation of the
equilibrium pressure reproduces the well known flattenifithe pressure gradient on the O-
points of magnetic islands. This work represents a first &iefhe study of the penetration of
externally induced RMPs into the plasma and the invesbgaif the effect on transport barrier
relaxations. The aim is to complete previous studies perdorin electrostatic approximation
of the model reproducing the control of barrier relaxatibgsRMPs[8, 9].
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