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Experimental observation of the edge turbulence in theofudievices [1] show that in the
Scrape of Layer (SOL) plasma is characterized with non-8anstatistics and non-Maxwellian
Probability Distribution Function (PDF). It has been recizgd that the nature of cross-field
transport trough the SOL is dominated by turbulence withgaificant ballistic or non-local
component and it is not simply a diffusive process [2]. In pihesent work we study the effect
of the non-Maxwellian plasma on anomalous transport usiggra-kinetic formalism. Here,
we consider the application of fractional kinetics to plasphysics. This approach, classical
indeed, is new in its application. Our aim is to study the &feof a non-Gaussian statistics
on the characteristics of the drift waves in fusion plasmés.use the solution of the Fokker-
Planck equation with a collisional operator consisting afaastant, uniform friction and a
stochastic field modeled by alpha-stable statistics repted by a fractional derivative in the
velocity space, see Ref. [3]. The solution of the FokkenBkaequation with fractional ve-
locity derivatives in shearless slab geometry and theostaty state is then plugged into the
linearized gyro-kinetic dispersion equation. The disjpgrgquation is solved numerically and
the solutions are presented.

Following the approach used by Barkai [4] we find the Fraaldfokker-Planck Equation
(FFPE) with fractional velocity derivatives for shearledab geometry in the presence of a
constant external force as:
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wheres(= e,i) represents the particle species and @ < 2. The diffusion coefficientD, is
related to the damping term,according to a generalized Einstein relation [4]:
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Here, T, is a generalized temperature, and taking be the Lorentz force (due to a constant
magnetic field and a zero-averaged electric field) actindherparticles of specieswith mass
ms andl" (1+ a) is the Euler gamma function. To find the solution we make ugtefourier

representation of the above equation as
0.7, 0.7,
5 v = DIk Fs, (3)

whereQs = esB/mgc is the Larmor frequency of speciesB = B/B is the unit vector in the
direction of magnetic field anés is the characteristic function
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Following the method used in Ref. [3, 5] the solution cormesfing to the homogenous and
steady state system is:
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We will now determine the dispersion relation for densitadjent driven drift waves. The
particle distribution function, averaged over gyro-phigsaf the form [6]
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We assume that the turbulence is purely electrostatic agléctenagnetic field fluctuations. If
the deviation from local equilibrium is not too large, it gisehe well-known linearized gyro-
kinetic equation
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where w,s = CTS 5Ky - d '””( ) is the drift wave frequency of speciesand we assumed that the

space dependence Eg‘ls only in thex direction perpendicular to the magnetic field and so is
the density gradientsy is the Bessel function of order zero. Hevgjs in the parallel velocity,

Vi = (Vi +2)Y2 is the absolute value of the perpendicular velocity, ane (V3 + vﬁ)l/2
Inserting the expression fdt; from the equation (5) and rearranging the terms we can solve
for the 5 f .. The wave vector perpendicular to magnetic field lindls is= (kZ +k2)%/2. The
gyro-kinetic equation (7) is completed with the Poissonagigu for the electric potential. For
fluctuations with wave vectors much smaller than the Debyewactor, the Poisson equation
becomes the quasi-neutrality condition

> &0, = 0. (8)
S
For the density fluctuation therefore we have
ons .. = & ad,s S
nk,w - _nS(r)ia@,w[M + Mk,w]- (9)
Therefore, the dispersion equation as in the Ref. [6] is:
M+ My = M3 — My (10)
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gives the adiabatic contribution, and
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gives the non-adiabatic contribution. Hebg,= k, V1 s/Qs. If we takea = 2 we will recover
the dispersion equation for a Maxwellian distribution asief. [6]. The analytical solutions
for integrals ovek" with an arbitrarya in the Equations (11) and (12) requires rather tedious
calculations. Instead we consider an infinitesimal desratf the forma = 2 — ¢, where 0<

€ < 2 and expand the terms dependingain the Equations (11) and (12) arouad= 0 as
follows
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Here, we have used the Euler-Mascheroni conggant 0.57721. By using the expansion de-
fined by the expression (13) in Equations (11) and (12), theatic and non-adiabatic part of
the dispersion relatioM?%s andMg  are as follows
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Inserting these relations we may rewrite the dispersiaaticet (10) in the form

(KDAK)E+ Ole]* = Ng o, + EWS . (16)
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The first terms on the right and left hand sides generate ted aentributions to the dispersion
equation as in Ref. [6] and the terms proportionat penerate the non-Maxwellian contribu-
tions. Assuming adiabatic electrons and after rearrantiagerms in the dispersion equation
we get the following relation fog;:
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wherew?adtot — 2 35\\ade L \wadi gndwadel gre the non-Maxwellian contributions of the
adiabatic responses for electrons and ions. This relati@s ghe possible deviation of the equi-
librium PDF from the Maxwellian PDF for a given plasma tunte, i.€5i = w/(|k; [Vri). One
has to remember that only positive valuesR#f¢| are physically meaningful. The dispersion
equation is solved numerically. In figure 1, the mode growatle as a function of; is shown.
As the dispersion equation is of 3rd orderdnthree possible solutions exist. However we are
only interested in the solutions with non-zero imaginarygay > 0 corresponding to unstable
situations. It is shown in figure 1 that a deviationsp£ 0.01 yield an increase of about 20% in
the growth rate. Furthermore, the growth rate increasesstlfimearly with increasing; and
such an increase in the growth rate will lead to a significaotaase in the level of anomalous
flux.
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