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Experimental observation of the edge turbulence in the fusion devices [1] show that in the

Scrape of Layer (SOL) plasma is characterized with non-Gaussian statistics and non-Maxwellian

Probability Distribution Function (PDF). It has been recognized that the nature of cross-field

transport trough the SOL is dominated by turbulence with a significant ballistic or non-local

component and it is not simply a diffusive process [2]. In thepresent work we study the effect

of the non-Maxwellian plasma on anomalous transport using agyro-kinetic formalism. Here,

we consider the application of fractional kinetics to plasma physics. This approach, classical

indeed, is new in its application. Our aim is to study the effects of a non-Gaussian statistics

on the characteristics of the drift waves in fusion plasmas.We use the solution of the Fokker-

Planck equation with a collisional operator consisting of aconstant, uniform friction and a

stochastic field modeled by alpha-stable statistics represented by a fractional derivative in the

velocity space, see Ref. [3]. The solution of the Fokker-Planck equation with fractional ve-

locity derivatives in shearless slab geometry and the stationary state is then plugged into the

linearized gyro-kinetic dispersion equation. The dispersion equation is solved numerically and

the solutions are presented.

Following the approach used by Barkai [4] we find the Fractional Fokker-Planck Equation

(FFPE) with fractional velocity derivatives for shearlessslab geometry in the presence of a

constant external force as:
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wheres(= e, i) represents the particle species and 0≤ α ≤ 2. The diffusion coefficient,D, is

related to the damping term,ν, according to a generalized Einstein relation [4]:

D =
2α−1Tαν

Γ(1+α)mα−1
s

. (2)

Here,Tα is a generalized temperature, and takingF to be the Lorentz force (due to a constant

magnetic field and a zero-averaged electric field) acting on the particles of speciess with mass

ms andΓ(1+α) is the Euler gamma function. To find the solution we make use ofthe Fourier

representation of the above equation as
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∂kv =−D|kv|αFs, (3)

whereΩs = esB/msc is the Larmor frequency of speciess, b̂ = B/B is the unit vector in the

direction of magnetic field andFs is the characteristic function

Fs(k,kv; t) =
∫ ∫

dr dvexp(ik · r+ ikv ·v)Fs(r,v; t). (4)
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Following the method used in Ref. [3, 5] the solution corresponding to the homogenous and

steady state system is:
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We will now determine the dispersion relation for density gradient driven drift waves. The

particle distribution function, averaged over gyro-phaseis of the form [6]

fs(r,v) = Fs(r,v)+(2π)−4
∫ ∫

dk dω exp(ik · r− iωt)δ f s
k,ω(v). (6)

We assume that the turbulence is purely electrostatic and neglect magnetic field fluctuations. If

the deviation from local equilibrium is not too large, it obeys the well-known linearized gyro-

kinetic equation
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whereω∗s = cTs
esB

ky · d ln n(x)
dx is the drift wave frequency of speciess, and we assumed that the

space dependence ofFs is only in thex direction perpendicular to the magnetic field and so is

the density gradients.J0 is the Bessel function of order zero. Here,v‖ is in the parallel velocity,

v⊥ ≡ (v2
x + v2

y)1/2 is the absolute value of the perpendicular velocity, andv = (v2
⊥ + v2

‖)
1/2.

Inserting the expression forFs from the equation (5) and rearranging the terms we can solve

for theδ fk,ω . The wave vector perpendicular to magnetic field lines isk⊥ = (k2
x +k2

y)1/2. The

gyro-kinetic equation (7) is completed with the Poisson equation for the electric potential. For

fluctuations with wave vectors much smaller than the Debye wave vector, the Poisson equation

becomes the quasi-neutrality condition

∑
s

esδns
k,ω = 0. (8)

For the density fluctuation therefore we have
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Therefore, the dispersion equation as in the Ref. [6] is:
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gives the adiabatic contribution, and
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gives the non-adiabatic contribution. Here,bs = k⊥VT,s/Ωs. If we takeα = 2 we will recover

the dispersion equation for a Maxwellian distribution as inRef. [6]. The analytical solutions

for integrals overkv with an arbitraryα in the Equations (11) and (12) requires rather tedious

calculations. Instead we consider an infinitesimal deviation of the formα = 2− ε, where 0≤
ε ≪ 2 and expand the terms depending onα in the Equations (11) and (12) aroundε = 0 as

follows
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Here, we have used the Euler-Mascheroni constantγE ≈ 0.57721. By using the expansion de-

fined by the expression (13) in Equations (11) and (12), the adiabatic and non-adiabatic part of

the dispersion relationMad,s andMs
k,ω are as follows
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Inserting these relations we may rewrite the dispersion relation (10) in the form

(1+Ne
k,ω)+ ε(Wad,e+We

k,ω) =−(1+Ni
k,ω)− ε(Wad,i +Wi

k,ω). (17)
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The first terms on the right and left hand sides generate the usual contributions to the dispersion

equation as in Ref. [6] and the terms proportional toε generate the non-Maxwellian contribu-

tions. Assuming adiabatic electrons and after rearrangingthe terms in the dispersion equation

we get the following relation forεi :

εi =
−2ξ 3

i +[ξ 3
i +0.5ξi − ω̄∗,iξ 2

i −0.5ω̄∗,i]e−bi/2I0(bi)
Wad,totξ 3

i +(ω̄∗,iξ 3
i −ξ 4

i )Zε(ξi)Γε(bi)
, (18)

whereWad,tot = 2.35Wad,e+Wad,i andWad,e,i are the non-Maxwellian contributions of the

adiabatic responses for electrons and ions. This relation gives the possible deviation of the equi-

librium PDF from the Maxwellian PDF for a given plasma turbulence, i.eξi = ω/(|k‖|VTi). One

has to remember that only positive values ofRe[ε] are physically meaningful. The dispersion

equation is solved numerically. In figure 1, the mode growth rate as a function ofεi is shown.

As the dispersion equation is of 3rd order in̄ω three possible solutions exist. However we are

only interested in the solutions with non-zero imaginary value,γ > 0 corresponding to unstable

situations. It is shown in figure 1 that a deviation ofεi = 0.01 yield an increase of about 20% in

the growth rate. Furthermore, the growth rate increases almost linearly with increasingεi and

such an increase in the growth rate will lead to a significant increase in the level of anomalous

flux.

Figure 1:γ as a function ofε. We have

assumedbi = 0.1, k‖ = 10−3 and ω̄∗,i =
−7.1×102 with d ln n/dx= 1.
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