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The goal of this communication is to compare the gyrokinetic momentum conservation law

recently derived by Scott and Smirnov [1] with the conservation law derived by an application

of the Noether method to the variational formulation of Vlasov-Poisson equations [2].

Gyrokinetic angular momentum

We begin with the gyrokinetic angular momentum conservation law

∂Pϕ

∂ t
+∇ ·Πϕ = 0 (1)

for an axisymmetric magnetic field B = ∇ϕ ×∇ψ + q(ψ)∇ψ ×∇θ , where the gyrokinetic

angular-momentum density

Pϕ = ∑
∫

F pgy ϕd3 p (2)

and the canonical gyrokinetic angular momentum flux [2]

Πϕ =
( ε2

8π
|E1|2

)∂X
∂ϕ
− ε2

4π
E1

(
E1 ·

∂X
∂ϕ

)
+∑

∫
F

dgyX
dt

pgy ϕd3 p, (3)

where ε� 1 denotes the ordering parameter associated with the electric-field fluctuations. In an

axisymmetic magnetic field B = ∇×A, where A =−ψ∇ϕ +Aθ (ψ)∇θ , the toroidal component

of the gyrocenter canonical momentum pgy = e
cA+ p||b̂ is given by

pgy ϕ =−e
c

ψ + p|| bϕ , (4)

where bϕ ≡ b̂ ·∂X/∂ϕ .

Gyrokinetic momentum conservation law in axisymmetric magnetic field

In a following section we give an overview of the principal steps leading from the (1) to

Eq. (80) obtained by Scott and Smirnov [1] and its generalization. First we decompose the

toroidal angular-momentum density as

Pϕ ≡−
ψ
c

ρ +P||,ϕ (5)

with the gyrocenter charge density ρ = ∑
∫

F d3 p and the parallel-toroidal gyrocenter momen-

tum density

P||ϕ =
(
∑
∫

F p||d
3 p
)

bϕ (6)
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Next, using the gyrokinetic Poisson equation
ε

4π

(
∇ ·E1

)
= e

∫
〈T−1

gy δ 3(X+ρρρgc− x)〉d3 p,

we obtain
ε2

4π

(
∇ ·E1

)(∂φ1

∂ϕ

)
=
(
∑
∫

F
δHgy

δφ1(x)
d6z
)(∂φ1

∂ϕ

)
≡∑

∫
F

∂Hgy

∂ϕ
d3 p (7)

where we have defined ∂Hgy/∂ϕ ≡ εe
〈
T−1

gy ∂φ1gc/∂ϕ
〉
. We can now use (7) to rearrange the

contributions from the Maxwell stress tensor in (3) so that (1) becomes
∂P||ϕ

∂ t
+∇ ·Qϕ =

ψ
c

∂ρ
∂ t
− ∑

∫
F
(∂Hgy

∂ϕ

)
d3 p, (8)

where the gyrocenter angular momentum flux density is

Qϕ = ∑
∫

F
dgyX

dt
pgy ϕd3 p (9)

and the gyrocenter velocity is
dgyX

dt
=

p||
m

B∗

B∗||
+

cb
eB∗||
×∇Hgy. (10)

The next step introduces magnetic-surface averaging
[[

. . .
]]
≡ 1

V

∮
(. . .)J dθ dϕ (11)

where V (ψ)≡ ∮ J dθdϕ is the surface-averaged magnetic-coordinate Jacobian J −1 = |∇ψ×
∇θ ·∇ϕ|, which has the general divergence property

[[∇ ·C]] =
1
V

∂
∂ψ

(
V
[[

Cψ
]])

(12)

We now use the surface-averaged charge conservation law in a combination with partial time

derivative gyrocenter quasineutrality condition, which yields the ambipolarity condition on the

physical radial current density:
∂ [[Pψ ]]

∂ t
+∑e

[[ ∫
F

dgyψ
dt

d3 p
]]

= 0, (13)

where Pψ is the gyrocenter radial polarization. After surface averaging (8), with (13), we

obtain Eq. (80) of Ref. [1]:
∂
∂ t

(
[[P||ϕ ]]+

1
c
[[Pψ ]]

)
+

1
V

∂
∂ψ

(
V [[Qψ

||ϕ ]]
)

=−∑e
[[∫

F
∂Hgy

∂ϕ
d3 p
]]

(14)

where we have introduced

[[Qψ
ϕ ]] = ∑

[[∫
F

dgyψ
dt

pgy ϕd3 p
]]
≡ [[Qψ

|| ϕ ]]− ψ
c ∑

[[∫
F

dgyψ
dt

d3 p
]]

(15)

and

[[Qψ
|| ϕ ]]≡∑

[[(∫
F

dgyψ
dt

p|| d
3 p
)

bϕ

]]
(16)

Let us now highlight some generalizations introduced by the Noether derivation compared with

the work of Scott and Smirnov [1].
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Generalization I: transport of non-canonical toroidal momentum

The first generalization refers to the definition of the gyrokinetic polarization

P = ∑ e
∫

F〈ρρρ〉εd3 p−∇ ·
(

∑ e
2

∫
F〈ρρρ〉ε〈ρρρ〉εd3 p

)
+ . . . (17)

where our derivation [2] takes into account corrections coming from guiding center transforma-

tion as well as gyrocenter transformation

〈ρρρε〉= 〈ρρρgc1〉+ 〈ρρρgy1〉 ≡ −
1

mΩ2

(
µ∇⊥B+

p2
||

m
b̂ ·∇b̂

)
− c

BΩ
∇⊥〈φ1gc〉 ≡

b̂
Ω
× d(1)

gy X
dt

(18)

where
d(1)

gy X
dt

=
p||
m

B∗

B∗||
+

cb̂
eB∗||
×∇(µB + eε 〈φ1〉) (19)

is a first order gyrocenter velocity, and B∗ = B +(cp||/e)∇× b̂ is a magnetic field containing

geometrical corrections due to the guiding center transformation. We note here that Scott and

Smirnov [1] only consider the gyroangle-averaged gyrocenter displacement 〈ρρρgy1〉. In our case

we can rewrite the gyrocenter polarization as

P = ∑ mc
B

b̂×
[∫

F
d(1)

gy X
dt

d3 p
]
−∇ ·R (20)

where the higher corrections are contained into the second-rank tensor

R≡∑ e
2

∫
F〈ρρρερρρε〉d3 p+ . . . (21)

With using the property of axisymmetric magnetic field ∇ψ ≡ B× ∂X
∂ϕ we obtain the expres-

sion for radial polarization:

Pψ = P ·∇ψ = ∑ mc
[∫

F

(
∂X
∂ϕ
· d

(1)
gy X
dt

−
p||
m

bϕ

)
d3 p
]
−∇ψ (·∇ ·R) , (22)

where
∂X
∂ϕ
· d

(1)
gy X
dt

= R2 d(1)
gy ϕ
dt

(23)

with R = |∂X/∂ϕ|. Finally we obtain:

1
c

Pψ +P|| ϕ = ∑
∫

F
(

mR2 d(1)
gy ϕ
dt

)
d3 p− 1

c
∇ψ (·∇ ·R) (24)

Consideration of full gyrocenter displacement (18) leads to recovery of full toroidal momen-

tum density, consisting of pure guiding center term −∫ F 1
mΩ2

(
µ∇⊥B+

p2
||

m b̂ ·∇b̂
)

d3 p, term

proportional to toroidal component of the E×B velocity issued from the gyrocenter correction

−∑
∫

F
( c

BΩ∇⊥〈φ1gc〉
)

d3 p and parallel toroidal momentum ∑F(p||/m)bϕd3 p.
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Generalization II: FLR effects

In our work [2] we perform a Taylor expansion of the source term ∂Hgy/∂ϕ in powers of the

gyrocenter displacement ρρρε defined in (18):

∂Hgy

∂ϕ
= εe

(
∂φ1

∂ϕ
+ 〈ρρρε〉 ·∇

∂φ1

∂ϕ
+

1
2
〈ρρρερρρε〉 : ∇∇

∂φ1

∂ϕ
+ . . .

)
(25)

Next we obtain the gyrocenter Vlasov-momentum equation with using the gyrocenter polariza-

tion (17)

∑
∫

F
∂Hgy

∂ϕ
d3 p = ∇ ·

[
ε P

∂φ1

∂ϕ
+ ε
(
∑ e

2

∫
F〈ρρρερρρε〉d3 p

)
·∇∂φ1

∂ϕ
+ . . .

]
(26)

Meanwhile Scott and Smirnov considered only the long-wavelength limit of the equation below,

with P '− ε(mnc2/B2)∇⊥φ1 and all the higher order effects are omitted.

Finally we obtain gyrokinetic parallel-toroidal momentum conservation law:

∂
∂ t

(
[[P||ϕ ]]+

1
c
[[Pψ ]]

)
+

1
V

∂
∂ψ

(
V [[Qψ

||ϕ ]]
)

+
1
V

∂
∂ψ

[
V

(
ε
[[

Pψ ∂φ1

∂ϕ
+Rψ ·∇∂φ1

∂ϕ
+ . . .

]])]
= 0 (27)

where

Rψ ≡ ∇ψ ·
(

∑ e
2

∫
F〈ρρρερρρε〉d3 p

)
≡ Rψ

0 + εRψ
1gy + . . . (28)

includes the guiding-center FLR corrections related to the lower-order guiding-center displace-

ment ρρρ0, as well as higher-order gyrocenter corrections εRψ
1gy.

In this communication two principal generalizations of the gyrokinetic momentum conserva-

tion law derived by Scott and Smirnov [1] have been identified. Consideration of full displace-

ment ρρρε in the definition of the gyrocenter polarization leads to recovery of toroidal momentum

density with P|| ϕ + c−1Pψ into the transport equation (14) as well as identification of the FLR

corrections to the residual stress tensor R. The full Noether derivation of the gyrokinetic mo-

mentum conservation law in a general geometry is presented in [2].
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