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The goal of this communication is to compare the gyrokinetic momentum conservation law
recently derived by Scott and Smirnov [1] with the conservation law derived by an application

of the Noether method to the variational formulation of Vlasov-Poisson equations [2].

Gyrokinetic angular momentum

We begin with the gyrokinetic angular momentum conservation law
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for an axisymmetric magnetic field B = V¢ x Vy + g(y)Vy x VO, where the gyrokinetic

angular-momentum density

Po=Y [ F poodp )
and the canonical gyrokinetic angular momentum flux [2]
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where € < 1 denotes the ordering parameter associated with the electric-field fluctuations. In an
axisymmetic magnetic field B=V x A, where A = —yV@ + Ay (y) V0, the toroidal component

of the gyrocenter canonical momentum pgy = £A + p, |f) is given by
e
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where by =b-9X/0¢.
Gyrokinetic momentum conservation law in axisymmetric magnetic field
In a following section we give an overview of the principal steps leading from the (1) to

Eq. (80) obtained by Scott and Smirnov [1] and its generalization. First we decompose the

toroidal angular—momentum dCI’lSity as
P, = Y ) P 5

with the gyrocenter charge density p = ¥ [ F d°p and the parallel-toroidal gyrocenter momen-

tum density

Plo=(X [ Fri@p)by (©)
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Next, using the gyrokinetic Poisson equation
= (v E1> /<T;yl53(X—|—pgc—x)>d3p7
we obtain
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where we have defined 8Hgy / dp = ¢ge <T Lo ¢, gc / 8(p> We can now use (7) to rearrange the

contributions from the Maxwell stress tensor in (3) so that (1) becomes
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where the gyrocenter angular momentum flux density is

Q=Y [FEZpy o ©

and the gyrocenter velocity is
dgy X il B* «¢b
dt m Bﬁ eBT|

The next step introduces magnetic-surface averaging

1
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where 7 (W) = § _#d0d ¢ is the surface-averaged magnetic-coordinate Jacobian _# ~! = |V x

X VH,y. (10)

VO - V|, which has the general divergence property

w-a1- 35 [[])

We now use the surface-averaged charge conservation law in a combination with partial time
derivative gyrocenter quasineutrality condition, which yields the ambipolarity condition on the

physical radial current density'

+Z H/F doV 3 o] =o, (13)

where 22V is the gyrocenter radial polarization. After surface averaging (8), with (13), we

obtain Eq. (80) of Ref. [1]:
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where we have introduced
B =X[[ [ F ¥ pod's|| =0l - YE[[ [ FEYa]] a3
and
ef =X [[(] F ¥ pyap) by ] (16)

Let us now highlight some generalizations introduced by the Noether derivation compared with

the work of Scott and Smirnov [1].
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Generalization I: transport of non-canonical toroidal momentum

The first generalization refers to the definition of the gyrokinetic polarization

QZZZe/ F<p)8d3p—V-( 2/ p)ed’ ) . (17)

where our derivation [2] takes into account corrections coming from guiding center transforma-

tion as well as gyrocenter transformation
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is a first order gyrocenter velocity, and B* = B + (cpH /e)V x b is a magnetic field containing

XV (uB + e (¢1)) (19)

geometrical corrections due to the guiding center transformation. We note here that Scott and
Smirnov [1] only consider the gyroangle-averaged gyrocenter displacement (p gy1>. In our case

we can rewrite the gyrocenter polarization as

(1)
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where the higher corrections are contained into the second-rank tensor
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With using the property of axisymmetric magnetic field Vy = B x ‘3% we obtain the expres-

sion for radial polarization:
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with Z = |0X/d ¢|. Finally we obtain:
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Consideration of full gyrocenter displacement (18) leads to recovery of full toroidal momen-
tum density, consisting of pure guiding center term — [ F— (/.LV 1B+ ||b Vb> d3p, term
proportional to toroidal component of the E x B velocity 1ssued from the gyrocenter correction

—Y [ F (351 (914c)) d°p and parallel toroidal momentum ZF(pH/m)b(pd3p.
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Generalization II: FLR effects
In our work [2] we perform a Taylor expansion of the source term dHgy/d ¢ in powers of the
gyrocenter displacement p, defined in (18):
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Next we obtain the gyrocenter Vlasov-momentum equation with using the gyrocenter polariza-

tion (17)
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Meanwhile Scott and Smirnov considered only the long-wavelength limit of the equation below,
with & ~ — g(mnc*/B*)V | ¢; and all the higher order effects are omitted.

Finally we obtain gyrokinetic parallel-toroidal momentum conservation law:
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includes the guiding-center FLR corrections related to the lower-order guiding-center displace-
ment P, as well as higher-order gyrocenter corrections .S‘Rl 2y

In this communication two principal generalizations of the gyrokinetic momentum conserva-
tion law derived by Scott and Smirnov [1] have been identified. Consideration of full displace-
ment P, in the definition of the gyrocenter polarization leads to recovery of toroidal momentum
density with P , + ¢~ 12V into the transport equation (14) as well as identification of the FLR

corrections to the residual stress tensor R. The full Noether derivation of the gyrokinetic mo-

mentum conservation law in a general geometry is presented in [2].
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